
A REGULARIZING LEVENBERG-MARQUARDT SCHEME,WITH APPLICATIONS TO INVERSE GROUNDWATERFILTRATION PROBLEMSMARTIN HANKE�Abstract. The �rst part of this paper studies a Levenberg-Marquardt scheme for nonlinearinverse problems where the corresponding Lagrange (or regularization) parameter is chosen from aninexact Newton strategy. While the convergence analysis of standard implementations based on trustregion strategies always requires the invertibility of the Fr�echet derivative of the nonlinear operatorat the exact solution, the new Levenberg-Marquardt scheme is suitable for ill-posed problems as longas the Taylor remainder is of second order in the interpolating metric between the range and domaintopologies.Estimates of this type are established in the second part of the paper for ill-posed parameteridenti�cation problems arising in inverse groundwater hydrology. Both, transient and steady statedata are investigated. Finally, the numerical performance of the new Levenberg-Marquardt scheme isstudied and compared to a usual implementation on a realistic but synthetic 2D model problem fromthe engineering literature.Key words. Nonlinear ill-posed problems, Levenberg-Marquardt method, Tikhonov regulariza-tion, parameter identi�cation, convergence analysis.AMS subject classi�cations. 65J15, 65J20, 35R301. Introduction. Inverse problems are often solved by approximately minimiz-ing the so-called output least squares functionalku� � F (a)k2 ;(1.1)where F : D(F ) � X ! Y is a nonlinear di�erentiable operator between Hilbert spacesX and Y, and u� are the given data. In many applications it follows from physicalconsiderations that u� is a reasonably close approximation of some ideal u = F (ay) inthe range of F , hence the minimization of (1.1).The Levenberg-Marquardt method is a variant of the Gau�-Newton iteration forthe minimization of (1.1). Given a current approximation an for ay the nonlinear map-ping F (a) in (1.1) is replaced by its linearization around an prior to the minimizationprocess. If the inverse problem is ill-posed, however, neither the original problem ofminimizing (1.1) nor its linearized counterpart need to have a solution; even worse, ifa minimizer does exist, it can be arbitrarily far o� from the true solution ay. This isimportant in many applications where one is interested in properties of ay itself andnot in F (ay).To overcome this instability one can proceed along several lines, leading to di�erentmotivations for essentially the same algorithm (cf., e.g., Vogel [16]). In the Levenberg-Marquardt method a trust region is chosen around an, i.e., a ball of radius �n, and thelinearized functional is minimized within this ball. This is easily seen to be equivalentto minimizing ku� � F (an)� F 0(an)hk2 + �nkhk2 �! min.(1.2)� Fachbereich Mathematik, Universit�at Kaiserslautern, D{67653 Kaiserslautern, Germany. email:hanke@math.uni-karlsruhe.de 1



for h = hn, where �n is the corresponding Lagrange parameter. Then this is repeatedwith an+1 = an + hn instead of an and (possibly) some updated trust region radius�n+1 until convergence. The di�culty in this approach is an appropriate strategy forchoosing f�ng, which must rely on heuristical considerations. Most standard strategies(cf. Dennis and Schnabel [6] or Nash and Sofer [15]), in �rst place, do not cope withthe ill-posedness of the problem; they have originally been developed to \globalize"the convergence of the Gau�-Newton iteration for well-posed minimization problems.On the other hand, another justi�cation for (1.2) is the regularization induced byadding the penalty term �nkhk2 to the linearized functional. This is equivalent toTikhonov's method (cf., e.g., Groetsch [10]) applied to the linearized problemF 0(an)h = u� � F (an) :(1.3)Note that for hyn = ay � an equation (1.3) holds up to the error"n = u� � u + R(ay; an)(1.4)in the right-hand side, where R(ay; an) denotes the Taylor remainder for the lineariza-tion around an.At this point it might be better to select �n from a trust region approach for"n in Y rather than some trust region around an in X . For example, assume thatthe right-hand side of (1.3) dominates "n, i.e., k"nk � �ku� � F (an)k for some � <1. The minimal norm solution of (1.3) subject to this constraint on the data �t ischaracterized by the same minimization problem (1.2) with the di�erence that �n isnow the reciprocal of the corresponding Lagrange parameter.It will be shown below that this latter choice of �n leads to stable Levenberg-Marquardt approximations of ay, provided that F 0(a) is locally bounded and the Taylorremainder R(~a ; a) satis�es the inequalitykR(~a ; a)k � C k~a� ak kF (~a)� F (a)k(1.5)for all ~a; a in a ball B � D(F ) around ay and some �xed C > 0. This assumption is ful-�lled for an important inverse problem in groundwater �ltration, for which numericalexamples will be given at the end of the paper.2. Monotonicity of the Levenberg-Marquardt iterates. Let � and  bepositive parameters with � < 1 < . Assume that after n iterations hyn = ay � ansatis�es (1.3) up to an errorku� � F (an)� F 0(an)hynk � � ku� � F (an)k :(2.1)Denote by hn;� the minimizer of (1.2) for a given parameter �n = �, and de�ne theactual Levenberg-Marquardt parameter �n from Morozov's discrepancy principleku� � F (an)� F 0(an)hn;�nk = �ku� � F (an)k :(2.2)It is well-known (cf. Groetsch [10, pp. 44]) that �n is uniquely determined from (2.2).Moreover, among all h 2 X with ku� �F (an)�F 0(an)hk � �ku� �F (an)k (includingh = hyn) hn;�n is the unique element of minimal norm. The following result shows thatan + hn;�n is a better approximation of ay than an.2



Proposition 2.1. Let 0 < � < 1 <  and assume that (2.1) is ful�lled so that �ncan be de�ned via (2.2). Then, with vn = �F 0(an)F 0(an)�+�nI��1(u� �F (an)) thereholds kay � ank2 � kay � (an + hn;�)k2 > 2( � 1)� ku� � F (an)k kvnk ;(2.3)and alsokay � ank2 � kay � (an + hn;�)k2 > 2( � 1)�(1 � �)kF 0(an)k2 ku� � F (an)k2 :(2.4)Proof. For ease of notation let T = F 0(an), ~y = u� � F (an) and, as before,hyn = ay � an. Since for � > 0hn;� = T �(TT � + �I)�1~y ; ~y � Thn;� = �(TT � + �I)�1~y ;(2.5)cf. [10], it follows thatkhn;� � hynk2 = khn;�k2 � 2hhn;�; hyn i+ khynk2= h ~y; TT �(TT � + �I)�2~y i � 2h (TT � + �I)�1~y; Thyn i+ khynk2= h ~y; TT �(TT � + �I)�2~y i � 2 h ~y; (TT � + �I)�1~y i+ 2 h (TT � + �I)�1~y; ~y � Thyn i+ khynk2= �h ~y; TT �(TT � + �I)�2~y i � 2�h ~y; (TT � + �I)�2~y i+ 2 h (TT � + �I)�1~y; ~y � Thyn i+ khynk2 :From (2.5) one concludes that h ~y; TT �(TT � + �I)�2~y i = khn;�k2 is nonnegative; itis actually positive because, in view of (2.1), ~y does not belong to the orthogonalcomplement of the range of T . As a consequence, this implies thatkhynk2 � khn;� � hynk2> 2� k(TT � + �I)�1~yk2 � 2 k(TT � + �I)�1~yk k~y � Thynk :(2.6)Consider now � = �n, i.e., the solution of (2.2). In this case the assumptions yieldk~y � Thynk � � k~yk and k~y � Thn;�nk = �k~yk . In view of (2.5), these two relationscan be used in (2.6) to obtain the inequalitykhynk2 � khn;�n � hynk2 > 2k(TT � + �nI)�1~yk��k~yk � � k~yk�= 2( � 1)� k~yk k(TT � + �nI)�1~yk :Since ~y = u� � F (an) and (TT � + �nI)�1~y = vn the �rst assertion (2.3) follows.For � > �1�� kTk2 there holds��+ � > � ; 0 � � � kTk2 ;3



and hence, cf. (2.5),k~y � Thn;�k = k�(TT � + �I)�1~yk > �k~yk for � > �1�� kTk2 :(2.7)This shows that �n � �1�� kTk2, and since ~y = (TT � + �I)vn this implies thatk~yk � kTT � + �Ik kvnk = (kTk2 + �)kvnk � 11� � kTk2kvnk :Inequality (2.4) now follows by using this as a lower bound for kvnk in (2.3).Since the Levenberg-Marquardt iteration proceeds withan+1 = an + hn;�n = an + F 0(an)�vn ;cf. (2.5), vn plays an important role in this iterative scheme. On the basis of Propo-sition 2.1 the following convergence result can now be established.Theorem 2.2. Let 0 < � < 1 and assume that F 0(�) is locally bounded and thatthe Taylor remainder of F satis�es (1.5) for some C > 0. If u� = u = F (ay) andif a0 2 B with ka0 � ayk < �=C then the Levenberg-Marquardt iteration with f�ngdetermined from (2.2) converges to a solution of F (a) = u as n!1.Proof. De�ne  = �=(C kay � a0k) which is greater than 1 by assumption. There-fore (1.5) with ~a = ay and a = a0 implies (2.1), and hence,kay � an+1k < kay � ankfor n = 0 by virtue of Proposition 2.1. By induction this inequality remains true forall n showing that kay � ank is monotonically decreasing during the entire iteration.It is more di�cult to establish the convergence of fang to a solution of F (a) = u.The proof, however, is the same as the one for Theorem 4.2 in [11], and is thereforeomitted here.While Theorem 2.2 shows that the iterates fang of the Levenberg-Marquardtiteration converge to a minimizer of (1.1) if the data u = F (ay) in (1.1) are givenexactly, the sequence cannot converge if no solution of F (a) = u� exists. From linearproblems it is well-known (cf. [7]) that the iteration will rather exhibit a semiconvergentbehaviour in this case: the iterates seemingly converge in the beginning of the iterationbefore they eventually turn to diverge. To prevent divergence and to compute stableapproximations of ay or some other solution of the unperturbed problem a suitablestopping rule has to be supplied.For the present version of the Levenberg-Marquardt iteration the discrepancyprinciple is an appropriate stopping rule for this purpose. Assume thatku� � F (ay)k � � ;and to emphasize the dependency on � in the remainder of this section let fa�ng denotethe iterates if u� instead of u is used in the iteration. According to the discrepancyprinciple the iteration is terminated as soon asku� � F (a�n)k � ��(2.8)is ful�lled for the �rst time, with � > 1 another parameter. The following resultshows that this stopping rule is well-de�ned and provides a stable approximation of asolution of F (a) = u. 4



Theorem 2.3. Let 0 < � < 1 and � > 1=�. Assume that F 0(�) is locally boundedin D(F ) and that the Taylor remainder of F satis�es (1.5). If ku � u�k � � and ifa0 2 B is su�ciently close to a solution ay of F (a) = u then the discrepancy principle(2.8) terminates the Levenberg-Marquardt scheme with parameters f�ng from (2.2)after n(�) <1 iterations. Moreover, the corresponding approximations a�n(�) convergeto a solution of F (a) = u as � ! 0.Proof. Let C be the constant in (1.5). At �rst it will be shown thatka� a�nk < ka� a�n�1k ; n = 1; : : : ; n(�) ;(2.9)provided that a is a solution of F (a) = u, and that an open ball around a of radius1C (�� � 1)=(� + 1) including a0 belongs to B. In this case it follows from (1.4) and(1.5) thatku� � F (a0)� F 0(a0)(a� a0)k � � +C ka� a0k ku� F (a0)k� �1 + C ka� a0k�� + C ka� a0k ku� � F (a0)k :If n(�) > 0 then � < ku� � F (a0)k=� , and hence,ku� � F (a0)� F 0(a0)(a� a0)k � 1 + (1 + �)C ka � a0k� ku� � F (a0)k :This shows that (2.1) holds for n = 0 with  = ��=(1 + (1 + �)C ka � a0k), which isgreater than 1 by assumption. Consequently Proposition 2.1 applies and the mono-tonicity assertion (2.9) follows as in the proof of Theorem 2.2.Now assume that a0 is so close to ay that (2.9) holds for a = ay. Then, taking thesum of (2.4) for n = 0; : : : ; n(�) � 1 one obtainsn(�)�2�2 � n(�)�1Xn=0 ku� � F (a�n)k2 � c22�(1� �)( � 1) kay � a0k2 <1 ;where c is a uniform bound for kF 0(a�n)k in B. This shows that n(�) is a �nite number.Next, consider a�n(�) as � ! 0. By continuity, if n(�) = n for all � > 0 then a�n ! anas � ! 0, where an is the nth Levenberg-Marquardt iterate with exact right-hand sideu. Furthermore, since ku� � F (a�n)k � �� by de�nition of n = n(�) there must holdF (an) = u in the limit � ! 0. Consequently, a�n(�) converges to the solution an ofF (a) = u in this �rst case that n(�) = n for all � > 0.Finally, assume that n(�)!1 as � ! 0, and denote by a the limit of fang whichexists by virtue of Theorem 2.2. Sinceka� ayk = limn!1 kan � ayk � ka0 � ayk ;cf. (2.9), it follows thatka� a0k � ka� ayk + kay � a0k � 2kay � a0k � �� � 1C(� + 1) ;provided that a0 is su�ciently close to ay. Therefore (2.9) applies with a being thelimit of fang. Given " > 0 let m(") be such that ka � amk < "=2 for m > m(") andlet �(") be so small that n(�) > m(") for � < �("); then it follows from (2.9) thatka� a�n(�)k < ka� a�mk � "=2 + kam � a�mk5



for m = m(") and all � < �("). Again by continuity it follows that kam � a�mk < "=2and hence ka�a�n(�)k < " for � su�ciently small. This proves that a�n(�) ! a as � ! 0in the case where n(�)!1.The general case now follows by considering appropriate subsequences of n(�) ifnecessary.It remains to comment on the rate of convergence, i.e., on the magnitude of n(�).According to the parameter choice rule (2.2) there holdsku� � F (a�n)� F 0(a�n)(a�n+1 � a�n)k = �ku� � F (a�n)k ; n = 0; 1; : : : ; n(�) � 1 :Using the triangle inequality and assumption (1.5) it follows that�ku� � F (a�n)k � ku� � F (a�n+1)k � kF (a�n+1)� F (a�n)� F 0(a�n)(a�n+1 � a�n)k� ku� � F (a�n+1)k � C ka�n+1 � a�nk kF (a�n+1)� F (a�n)k� �1� C ka�n+1 � a�nk�ku� � F (a�n+1)k� C ka�n+1 � a�nk ku� � F (a�n)k ;and hence, ku� � F (a�n+1)k � �+ C ka�n+1 � a�nk1� C ka�n+1 � a�nk ku� � F (a�n)k :(2.10)The fraction on the right-hand side is below 1 for � su�ciently small and n su�cientlylarge which yields the following result.Theorem 2.4. Under the assumptions of Theorem 2.3 the stopping index n(�)grows like n(�) = O(j log � j) as � ! 0.It can also be seen from (2.10) that the asymptotic convergence factor for thedecay rate of the residuals will approach � as � ! 0.Remark. Theorems 2.2 and 2.3 actually hold for a considerably larger classof strategies for choosing the Levenberg-Marquardt parameter �n in (1.2). Roughlyspeaking, any continuous parameter choice rule (i.e., a rule for which �n dependscontinuously on u�) with �n greater than the solution of (2.2) will do. This is sobecause for those parameters (2.2) can be replaced byku� � F (a�n)� F 0(a�n)hn;�nk � �ku� � F (a�n)k ;cf. [10, Thm. 3.3.1], which su�ces for the proof of Proposition 2.1.For example, if � > 2 then alternative choices include �n = kF 0(a�n)k2 in viewof (2.7), or �n = �, a constant greater than kF 0(a)k2 for all a 2 B. A particularlyattractive choice for �n is a strategy developed by Engl, Gfrerer and Raus (cf. [7,Sect. 4.4]) for choosing the regularization parameter in Tikhonov regularization forlinear problems. This parameter choice rule which determines �n fromh r�; �(F 0(a�n)F 0(a�n)� + �I)�1r� i = �2ku� � F (a�n)k2 ;with r� = u� � F (a�n)� F 0(a�n)hn;� ;(2.11)has the advantage that under assumption (2.1) the corresponding error is alwayssmaller than for any greater parameter � (cf. [7, Prop. 5.12]). The solution �n of (2.11)is somewhat greater than the solution of (2.2), but always less than � = ckF 0(a�n)k2for some c depending only on �. 6



3. An inverse problem in groundwater hydrology. Let 
 be a boundeddomain in IRN , N � 2, with smooth (C2) boundary �, and consider the boundaryvalue problem ut � div (a grad u) = f in 
 ;u = ' on � ;(3.1)where f and ' are functions of time t with values inH�1(
) andH1=2(�), respectively.This di�erential equation is used as a model for groundwater ow, where a is thedi�usivity of the sediment, u the piezometric head, and f represents water sourcesand sinks. Further applications of (3.1) are discussed by Banks and Kunisch [2].Given Cauchy data u0 2 L2(
) the direct problem associated with (3.1) consistsin �nding a solution u of (3.1) in a time interval T = [0; T ] with u(0) = u0 forgiven functions a, f , and '. Under mild assumptions on a, namely a 2 L1(
) witha(x) � a > 0 for all x 2 
 (3.1) has a weak solution u with values in H1(
), cf., e.g.,Dautray and Lions [5]. Let F : a 7! u denote this parameter-to-solution mapping.The inverse problem is aiming for the material coe�cient a in order to explorethe internal structure of the aquifer 
. To this end, wells are drilled to measure uin 
 (f and ' are presumably known), and then the nonlinear problem F (a) = u issolved for a. Hence, this corresponds to the setting of the introduction. In the sequelit shall be assumed that distributed data for u are given in L2(T �
). If only discretemeasurements are available (e.g., the values of u at the wells) this may call for aninterpolation of these measurements prior to reconstruction, cf. Section 4.2. In thissetting, i.e., with X � L1 and Y = L2(T � 
) the inverse problem is known to beill-posed, cf., e.g., Kravaris and Seinfeld [13] or [2, Sect. 4.2].In practical applications both the steady state of (3.1) (where f and ', and henceu do not depend on time) as well as the overdetermined transient case are of interest.In either case the validity of the basic assumption (1.5) for the results of Section 2hinges on the H2 regularity of the elliptic operatorAu = �div (a grad u) ;(3.2)de�ned for the moment on H10(
) in the usual weak sense. Here, A is called H2 regularif kukH2(
) can be bounded by kAukL2(
) for any function u 2 H2(
)\H10(
). Notethat H2 regularity has also been employed as an essential ingredient in [2, Chapter 6](see also [4]) for a convergence analysis of certain constrained projection methods forreconstructing ay.H2 regularity imposes a certain smoothness on the parameter function a (cf. La-dyzhenskaya and Ural'tseva [14] or Grisvard [9]), e.g., a 2 W1;p(
) with p > N .Here, W1;p(
) is the usual Sobolev space of functions with weak derivatives in Lp(
),cf. Adams [1]. The restricition a 2 W1;p(
) will also serve as a basic assumption for theanalysis to come; it implies that A is an isomorphism between V := H2(
) \ H10(
)and L2(
), cf. [14, p. 184]. Denote by V 0 the dual space of V with respect to thebilinear form h v ; w i = Z
 v(x)w(x) dx ;and identify the corresponding dual space of L2(
) with itself. Then the associateddual operator A0 : L2(
)! V 0 of A is an isomorphic extension of A to L2(
) because7



A is symmetric when considered as a densely de�ned operator in L2(
). The samesymbol A will again be used for this extension to all of L2(
) further on.On the other hand, for a not necessarily positive function h 2 W1;p(
) with p > Nand associated operatorH : H2(
)! L2(
) ; H : u 7! div (h grad u) ;(3.3)one has kHkL2(
) H2(
) � ckhkW1;p(
) ;(3.4)and the constant c therein depends only on 
. To see this, let u 2 C1(�
) and considerkHukL2(
) = kh�u + grad h � gradukL2(
)� khkL1(
)k�ukL2(
) + k grad h � gradukL2(
) :Using the H�older inequality the second member of the right-hand side can be esti-mated from above by ckhkW1;p(
)kukW1;q(
) with q = 2p=(p � 2). Now (3.4) followsbecause W1;p(
) embeds continuously into L1(
) and H2(
) embeds continuouslyinto W1;q(
) as p > N (cf. [1]).H extends to an operator H : H1(
) ! V 0 in the usual weak sense. The fol-lowing estimate will be useful below: given u 2 H1(
) and v 2 V it follows throughintegration by parts (n denotes the outward normal to 
 on �) thathHu ; v i = Z
 udiv (h grad v) dx � Z� hu @v@n ds� kukL2(
)kHvkL2(
) + khukH�1=2(�)kvkV� �kukL2(
)kHkL2(
) H2(
) + khkL1(
)kukH�1=2(�)� kvkV :Together with (3.4) this implies thatkHukV 0 � ckhkW1;p(
)�kukL2(
) + kukH�1=2(�)� :(3.5)3.1. The steady state case. Assume for the time being that f and ' areconstant in time. Let a; ~a 2 W1;p(
) be bounded from below by some a > 0, and letA and ~A be the associated operators (3.2). Furthermore, let u = F (a) and ~u = F (~a)be the solutions (which are now functions of space only) of the respective boundaryvalue problems (3.1).It is instructive to evaluate Au as u = F (a) =2 V , and hence, A here really denotesthe extended operator. It turns out thatAu = f � g ;(3.6)where g 2 V 0 is the representation of the continuous linear functionalh g ; v i = Z� a' @v@n ds ; v 2 V :8



Considered as a mapping from W1;p(
) to L2(
) the operator F is di�erentiable:u0 = F 0(a)h is given as the (weak) solution of the boundary value problem� div (a grad u0) = div (h grad u) in 
 ;u0 = 0 on � ;or rather, Au0 = HF (a)(3.7)with A and H as above. This formula is well-known in the literature; moreover, cf. Itoand Kunisch [12], the derivative considered as an operator F 0(a) : L1(
)! L2(
) isa compact operator. This means that not only the nonlinear inverse problem but alsothe linearized problem (1.3) is ill-posed in general.Theorem 3.1. Let 
 � IRN be bounded with C2 boundary �, and a; ~a 2 W1;p(
)with p > N be greater than a > 0 in 
. Then F 0(�) is uniformly bounded in a W1;p(
)-neighborhood of a andkF (~a)� F (a)� F 0(a)(~a � a)kL2(
) � C k~a� akW1;p(
)kF (~a)� F (a)kL2(
) ;where the constants only depend on 
, a and on the W1;p(
) norm of a.Proof. Since A of (3.2) is an isomorphism from L2(
) to V 0 it follows from (3.7)that F 0(a)h = A�1HF (a) ;and hence, by (3.5),kF 0(a)hkL2(
) � kA�1kL2(
) V 0 kHF (a)kV 0� c khkW1;p(
)�kF (a)kL2(
) + k'kH�1=2(�)� ;where the constant c depends only on 
, a, and kakW1;p(
), cf. [14, p. 189]. Fur-thermore, by (3.6), kF (a)kL2(
) depends on the same quantities as before, as well ason kfkV 0 and on k'kH�1=2(�). As a consequence, kF 0(�)k is uniformly bounded in aW1;p(
)-neighborhood of a.Now let u = F (a), ~u = F (~a), and u0 = F 0(a)h with h = ~a � a. It will be usefulfor the sequel to evaluate A~u: taking an arbitrary v 2 V and integrating by parts itfollows from the variational de�nition of ~u thathAv ; ~u i = � Z� a' @v@n ds + Z
 a grad ~u � grad v dx= �h g ; v i + Z
(a� ~a) grad ~u � grad v dx + h f ; v i= h f � g +H~u ; v i ;and hence, A~u = f � g +H~u. Therefore, forw = ~u� u� u0 = F (~a)� F (a)� F 0(a)(~a� a)9



it follows from (3.6) and (3.7) thatAw = A~u�Au�Au0 = f � g +H~u� (f � g)�Hu = H(~u� u) :Together with (3.5) this yieldskwkL2(
) � kA�1kL2(
) V 0 kH(~u� u)kV 0 � c khkW1;p(
)k~u� ukL2(
) ;where again, c only depends on 
, a and on kakW1;p(
).For a 1D version of Theorem 3.1 (with a and ~a in H1(
)), cf. [7, Ex. 11.1].Since W1;p(
) is no Hilbert space, it is no suitable choice for X in the setting ofSections 1 and 2. On the other hand, when N � 3 then H2(
) can be continuouslyembedded into W1;p(
) for appropriate p > N :Corollary 3.2. Assume that N = 2 or N = 3 and that 
 is as in Theorem 3.1.If a; ~a 2 H2(
) are bounded in 
 from below by some a > 0 thenkF (~a)� F (a)� F 0(a)(~a� a)kL2(
) � C k~a� akH2(
)kF (~a)� F (a)kL2(
) :Proof. Note, cf. [1], that H2(
) is continuously embedded in W1;p(
) when p � 2and (N � 2)p � 2N . Thus, for N = 2 and N = 3, every a 2 H2(
) is embedded inW1;4(
), i.e., kakW1;4(
) � ckakH2(
) for some �xed c > 0. Thus the assertion followsfrom Theorem 3.1 with p = 4.In higher dimensional spaces a 2 H2(
) does not su�ce in Corollary 3.2. Thereason is twofold. First, the argument in the proof fails for higher dimensions. Sec-ondly, the analysis in Section 2 requires that a whole ball in X around ay containsonly strictly positive functions. Consequently, X has to be a subspace of boundedfunctions.Remark. Note that in the proof of Theorem 3.1 the functions u; ~u, and w needonly belong to L2(
). Therefore the same result holds under considerably weakerassumptions on f and g; in particular, f 2 V 0 would be su�cient. This may be ofpractical importance because it allows the use of delta distributions for f (e.g., pointinjections at the wells) provided that N � 3.3.2. The transient case. When f and ' are functions of time t, 0 � t � T ,i.e., f 2 L2(0; T ;H�1(
)) ; ' 2 L2(0; T ;H1=2(�)) ;and the initial data u0 belong to H1(
) then (3.1) has a unique solutionu = F (a) 2 L2(0; T ;H1(
)) :The formal derivative of F with respect to a has a similar form as above, i.e., u0 =F 0(a)h solves the Cauchy-Dirichlet problemu0(0) = 0 ; Lu0 � u0t � div (a grad u0) = Hu in 
 ;u0 = 0 on � ;(3.8)where H is given by (3.3) and u = F (a) is the solution of (3.1) with initial datau(0) = u0. 10



Theorem 3.3. Let 
 � IRN be bounded with C2 boundary �, and a; ~a 2 W1;p(
)with p > N be greater than a > 0 in 
. Then F 0(�) is locally bounded in a W1;p(
)-neighborhood of a andkF (~a)�F (a)�F 0(a)(~a�a)kL2(0;T ;L2(
)) � C k~a�akW1;p(
)kF (~a)�F (a)kL2(0;T ;L2(
)) ;where c depends only on 
, on a and on the W1;p(
) norm of a. Corollary 3.2 appliesaccordingly.Proof. By the regularity result in [5, p. 116] the dual operator L0 of L (withrespect to L2(0; T ;L2(
)) given byL0v = � vt � div (a grad v)for v 2 L2(0; T ;H10(
)) with v(T ) = 0 (which corresponds to an evolution operatorbackwards in time from T to 0) is bounded from below as operator from L2(0; T ;D(A))to L2(0; T ;L2(
)). Under the assumptions of the theorem,D(A) � fu 2 H10(
) j Au 2 L2(
)g = V ;and hence, L is bounded from below as a mappingL : L2(0; T ;L2(
))! L2(0; T ;V 0) :Consequently, it follows from (3.8) and (3.5) that for certain c > 0kF 0(a)hk2L2(0;T ;L2(
)) � c Z T0 kHF (a)k2V 0 dt� c Z T0 khk2W1;p(
)�kF (a)k2L2(
) + k'k2H�1=2(�)� dt� c khk2W1;p(
)�kF (a)k2L2(0;T ;L2(
)) + k'k2L2(0;T ;H�1=2(�))� :The boundedness of the derivative now follows similar to the proof of Theorem 3.1.Furthermore, if h = ~a�a, u = F (a), ~u = F (~a), and u0 denotes the solution of (3.8),then similar computations as in the proof of Theorem 3.1 establish that w = ~u�u�u0is a solution of w(0) = 0 ; Lw = H(~u� u) ; wj� = 0 ;and the same inequality chain as before yieldskwkL2(0;T ;L2(
)) � c khkW1;p(
)k~u� ukL2(0;T ;L2(
))as was to be shown.Remark. Once again, the crucial role of the H2 regularity of the di�erentialoperator A of (3.2) for the theorems in this section should be stressed. Whenever A isH2 regular under modi�ed assumptions on 
 analogous results can be established. Inparticular, similar results follow for convex domains from the regularity results in [9].11
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Fig. 4.1. Phantom ay and the locations of the wells4. Numerical results. The theoretical results in this paper establish that theLevenberg-Marquardt scheme with the parameters f�ng determined from (2.2) canbe applied to the above inverse problems from groundwater hydrology. The algorithmhas been tested on synthetic data suggested by Carrera and Neuman [3] as a realistictest case for inverse groundwater �ltration problems.The exact di�usivity coe�cient ay of this model problem is piecewise constant withsigni�cant discontinuities; hence, A of (3.2) lacks H2 regularity and the theoreticalanalysis of this paper does not apply to this particular example. Nevertheless, thenumerical results are extremely promising and indicate the usefulness of the methodfor a larger class of problems. This does not mean, however, that this algorithmis recommended as the method of choice for this problem. There are a number ofalternative approaches, cf., e.g., the survey of Yeh [17] and the references in [2, 3].More recent contributions with up to date references can be found in the proceedingsof the 1994 gamm-siam conference on di�usion processes [8].The synthetic data from [3] correspond to a square aquifer (0 � �; � � 6) withsix di�erent transmissivity zones with constant values of ay, ranging from 5 to 150 asdisplayed in Figure 4.1. The circles in this �gure mark the locations of the eighteenwells where head measurements are to be taken; the dashed line will be referred tolater on. The piezometric head u solves the di�erential equation (3.1) with mixedNeumann-Dirichlet boundary data on �, namelyu (�; 0) = 100 ; u�(6; �) = 0 ;(au�) (0; �) = �500 ; u� (�; 6) = 0 :The right-hand side f of (3.1) is given byf(�; �) = 8><>: 0 ; 0 < � < 4 ;137 ; 4 < � < 5 ;274 ; 5 < � < 6 :Carrera and Neuman also suggest a transient test case corresponding to a pumpingof two out of the eighteen wells. For the ease of computation and to simplify the displayof computational output, numerical results will only be presented for the steady statecase. 12
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Fig. 4.2. Contour plots of the two reconstructionsThe implementation of this example uses a re�nement of the triangularization in[3] of the aquifer area with 288 triangles and 169 grid points. The exact di�usivity co-e�cient ay is used to compute approximate head data with the �nite element method;random noise is added to all simulated data. Although the same triangularization isused for the inverse problem, approximate di�usivity parameters are taken from thesubspace of piecewise linear functions. As a consequence the exact di�usivity coe�-cent does not belong to this trial space; in fact, the best approximation of ay from thissubspace has a relative error of approximately 0:1628 (measured in L2(
)).In this implementation F is considered as a mappingF : D(F ) \ L2(
)! L2(
) ;i.e., X = Y = L2(
). Here, as before,D(F ) = fa 2 L1(
) j ess inf a > 0g :To take this positivity constraint into account the Levenberg-Marquard method ismodi�ed in the following way: whenever the value of some iterate an at some gridpoint happens to be negative this value is replaced by one. In all experiments withthe Levenberg-Marquardt method a0 � 20 is used as initial guess. The parameters �and � in (2.2) and (2.8) are freezed throughout to be � = 0:5 and � = 2:5.The numerical results are summarized under three aspects: the regularizing prop-erties of the iteration, the performance with distributed data and with discrete mea-surements, and the e�ciency of the method as compared to a conventional Levenberg-Marquardt strategy as described, e.g., in [6].4.1. Regularizing properties. To verify the regularizing properties as pre-dicted by Theorem 2.3 distributed data with two di�erent signal to noise ratios (snr)of 100 and 1000 (with respect to L2(
)) have been used as input for the Levenberg-Marquardt scheme. The reconstructions are shown in Figure 4.2 in form of a contourplot, the level lines corresponding to multiples of ten. For an alternative visualiza-tion of these results consider Figure 4.3: it shows the traces of the phantom and ofthe two reconstructions along the dashed lines in Figure 4.2 connecting the points13



                                                                                 
0

50

100

150 phantom

SNR 1000

SNR 100

Fig. 4.3. Diagonal traces of the reconstructions
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IterationsFig. 4.4. Error and residual history for both noise levels(�; �) = (1; 0) and (6; 5) (compare also Figure 4.1). The improvement with less noiseis obvious from this plot.It is even more instructive to look at the iteration history of the relative errors,kan � ayk=kayk , and of the relative residuals, ku� � F (an)k=ku�k . These historiesare displayed in Figure 4.4. On each of these curves, a star denotes the point wherethe algorithm is terminated according to the discrepancy principle (2.8): these are thepoints when the residual norm drops below �=snr with � = 2:5 (as indicated by thedotted lines in the right-hand side plot). As the error history shows, in both casesthis termination point is close to optimal. Note that the dotted line indicates theerror of the best approximation of ay from the trial space of piecewise linears: thereconstructions of the algorithm are only worse by a factor of 2.4 (snr = 100) and 1.5(snr = 1000), respectively.Concerning the analysis of Sect. 2 the essentially monotonic decay of the iterationerror is in nice agreement with the theory. In the case of snr = 100 the semiconvergentbehaviour of the iteration is also obvious: without an adequate stopping criterion theiteration would eventually diverge. A similar phenomenon occurs in the case of lessnoise after some twenty more iterations. Finally, concerning Theorem 2.4, note that14



the residual does indeed decay linearly with a reduction of about 60% per step inthe beginning of the iteration (the residuals are displayed in a semilogarithmic plot)but in the case of less noise this behaviour seems to deteriorate before the stoppingpoint is reached. This may indicate that the necessary assumption (1.5) does not holdthroughout.4.2. The case of discrete measurements. In practice head data will only bemeasured at a �nite number of wells within 
. Carrera and Neuman suggest to takedata at the eighteen locations indicated by circles in Figure 4.1. The results presentedin this subsection are based on point evaluations of the noise-corrupted piezometrichead u� (snr = 100) at these locations.There are two principally di�erent approaches in dealing with this case of discretemeasurements. One option is to interpolate the eighteen measurements to obtain\distributed" data which can then be used in precisely the same way as above. If thisis done the interpolated head function ~u has a relative error of k~u � uk=kuk � 0:02(the corresponding signal to noise ratio is snr � 48:7), which corresponds to twice asmuch noise as for the respective \input function" u�. It therefore comes as no surprisethat the reconstructions of the di�usivity coe�cient are somewhat worse: the bestapproximations are obtained after about ten iterations with a relative error somewhatbelow 0.39 (for comparison: the best error for snr = 100 has been 0.31, cf. Figure 4.4).Alternatively one could consider the nonlinear operator F as a mapping fromD(F )\L2(
) to IR18, i.e., the set of discrete data vectors equipped with the Euclideannorm. Of course, the same Levenberg-Marquardt algorithm can be applied to thissemidiscrete setting. With this approach the optimal reconstruction had an error of0.38, but it took more than �fty iterations to get there.Note that the costs per iteration are not much di�erent in either approach becausethe same number of boundary value problems (3.7) must be solved to evaluate F 0(a).Therefore, in this example, the semidiscrete case turned out to be considerably moreexpensive without giving any better results.4.3. A classical Levenberg-Marquardt implementation. In standard soft-ware packages the Lagrange parameter �n of the Levenberg-Marquardt method isselected on the grounds of a trust region strategy, cf. [6, 15]. Letkhk � �n(4.1)de�ne the trust region after n iterations. In the (n + 1)st iteration the new approxi-mation is de�ned as an+1 = an + hn where hn is the minimizer ofku� � F (an)� F 0(an)hk2 �! min.subject to the constraint (4.1). Afterwards the radius �n of the trust region is modi�edaccording to the improvement of the nonlinear objective function ku� �F (a)k duringthis iteration.To compare the new Levenberg-Marquardt scheme with those more standard onesthe following trust region strategy from [6, p. 145] has been implemented. Denote by�f := ku� � F (an)k � ku� � F (an + h)kthe actual reduction of the objective function, and compare �f with the reduction�fpred := ku� � F (an)k � ku� � F (an)� F 0(an)hk15



0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1
Relative errors

(4.2)

(2.2)

Iterations
1 5 9 13

1e−6

1e−5

1e−4

1e−3

1e−2

1e−1

   1

  10
Relative Lagrange parameters

IterationsFig. 4.5. Error history and �-history for both implementations (snr = 100)predicted by the linear model. Then the trust region radius �n is updated in thefollowing way: �n+1 = 8><>: p2 �n �f � 0:75�fpred ;�n=p2 �f � 0:1�fpred ;�n else :(4.2)No line search is implemented in this scheme but for a robust performance ofthis algorithm it is essential to discard updates hn for which �f is negative, i.e.,for which the objective function increases; such iterations are said to be unsuccessful.Unsuccessful iterations are repeated with a reduced trust region radius �n  �n=2 untilthey eventually become successful. (In this implementation no Armijo-type condition,cf. [15, p. 315], is imposed on an iteration to be successful). Note that unsuccessfuliterations do not show up in the iteration history plots in Figure 4.5, but they arenevertheless essential for a comparison of the two algorithms because unsuccessfuliterations are as expensive as successful ones.The two Levenberg-Marquardt implementations (the new scheme with �n chosenfrom (2.2) and the classical one with the trust region strategy (4.2)) have both beentested on the model problem with snr = 100. Consider Figure 4.5 for the iterationhistories: the solid lines refer to the conventional implementation using (4.2) whereasthe dashed lines correspond to the new algorithm. As can be seen from the errorhistory in the left-hand plot the performance of the two methods is quite comparablein the �rst ten iterations. In both cases the error is reduced to about 0.31 after eightiterations which is essentially optimal. But not only the iteration history is comparableup to this point; the reconstructions are similar, too, which is quite obvious fromFigure 4.6 which shows the traces of the two reconstructions along the dashed line inFigure 4.1.After seven iterations, however, every further iteration of the conventional imple-mentation happens to run into two unsuccessful iterations in the average, thus leadingto a signi�cant computational overhead. In fact, the algorithm would diverge if unsuc-cessful iterations were considered successful. (Note that the new Levenberg-Marquardtscheme does not distinguish between successful and unsuccessful iterations). The im-pact on the chosen Lagrange parameters can be seen from the right-hand plot of16
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Fig. 4.6. Reconstructions (trace) after eight iterationsFigure 4.5. It shows the \relative Lagrange parameters" for the successful iterations,i.e., �n=kF 0(an)k2, the Lagrange parameter divided by the squared norm of the linearoperator.It seems as if the general tendency in choosing the parameter �n from the twoadaptive strategies (2.2) and (4.2) is not much di�erent { at least in the convergentstage of the iteration. Both schemes �rst reduce the parameter subsequently down toa (relative) value between 10�4 and 10�5. This value is then recognized as being toosmall, and hence increased. While the new strategy of changing �n turns out to bequite exible, the conventional implementation is somewhat more lethargic; this couldof course be modi�ed by replacing p2 by a somewhat larger factor in (4.2).In summary, the standard Levenberg-Marquardt method seems to give the sameaccuracy as the new scheme for which regularizing properties can be established. Onthe other hand, it is not clear what kind of stopping rule would be appropriate forthe standard implementation. Although this may not be such a delicate question asfar as stability is concerned, it is essential for the computational expenses: if only teninstead of eight iterations were performed with the present trust region implementationthis would result in additional seven unsuccessful iterations, and hence, the standardimplementation would require about twice as much work as the new scheme.5. Conclusion. The adaptive strategy (2.2) for choosing the Lagrange param-eter in the Levenberg-Marquardt method has been shown to be a stable method. Incombination with the discrepancy principle (2.8) as a stopping rule this algorithm isa regularization method in the sense of [7, Def. 3.1] for (at least some) ill-posed prob-lems. In particular, this method applies to the reconstruction of di�usivity parametersin elliptic and parabolic equations from distributed data. Problems of this type arise,e.g., in groundwater hydrology.The numerical experiments seem to con�rm the theoretical results. It turns out,however, that a conventional trust region strategy seems to give comparable recon-structions, at least for the particular example considered in Sect. 4. Whether suchtrust region implementations of the Levenberg-Marquardt iteration are also regular-ization methods in the aforementioned sense remains a very interesting open problem.Especially, this concerns the design of suitable stopping criteria for these implemen-17
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