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ABSTRACT

Ensembles used for probabilistic weather forecasting often exhibit a spread-error correlation, but they
tend to be underdispersive. This paper proposes a statistical method for postprocessing ensembles based on
Bayesian model averaging (BMA), which is a standard method for combining predictive distributions from
different sources. The BMA predictive probability density function (PDF) of any quantity of interest is a
weighted average of PDFs centered on the individual bias-corrected forecasts, where the weights are equal
to posterior probabilities of the models generating the forecasts and reflect the models’ relative contribu-
tions to predictive skill over the training period. The BMA weights can be used to assess the usefulness of
ensemble members, and this can be used as a basis for selecting ensemble members; this can be useful given
the cost of running large ensembles. The BMA PDF can be represented as an unweighted ensemble of any
desired size, by simulating from the BMA predictive distribution.

The BMA predictive variance can be decomposed into two components, one corresponding to the
between-forecast variability, and the second to the within-forecast variability. Predictive PDFs or intervals
based solely on the ensemble spread incorporate the first component but not the second. Thus BMA
provides a theoretical explanation of the tendency of ensembles to exhibit a spread-error correlation but yet
be underdispersive.

The method was applied to 48-h forecasts of surface temperature in the Pacific Northwest in January–
June 2000 using the University of Washington fifth-generation Pennsylvania State University–NCAR Me-
soscale Model (MM5) ensemble. The predictive PDFs were much better calibrated than the raw ensemble,
and the BMA forecasts were sharp in that 90% BMA prediction intervals were 66% shorter on average than
those produced by sample climatology. As a by-product, BMA yields a deterministic point forecast, and this
had root-mean-square errors 7% lower than the best of the ensemble members and 8% lower than the
ensemble mean. Similar results were obtained for forecasts of sea level pressure. Simulation experiments
show that BMA performs reasonably well when the underlying ensemble is calibrated, or even overdis-
persed.

1. Introduction

The dominant approach to probabilistic weather
forecasting has been the use of ensembles in which a
model is run several times with different initial condi-
tions or model physics. This was proposed by Leith
(1974) as a way of implementing the general framework
presented by Epstein (1969). Ensembles based on glob-
al models have been found useful for medium-range
probabilistic forecasting (Toth and Kalnay 1993; Mol-
teni et al. 1996; Houtekamer and Derome 1995; Hamill
et al. 2000). Typically the ensemble mean outperforms
all or most of the individual ensemble members, and in
some studies a spread-error correlation has been ob-
served, in which the spread in the ensemble forecasts is
correlated with the magnitude of the forecast error.

Often, however, the ensemble is underdispersive and
thus not calibrated. Both spread-error correlations and
underdispersion have been observed in the National
Centers for Environmental Prediction (NCEP) opera-
tional global ensemble (Toth et al. 2001; Eckel and
Walters 1998), the Canadian Ensemble Prediction Sys-
tem (Pellerin et al. 2003), and the European Centre for
Medium-Range Weather Forecasts (ECMWF) en-
semble (Buizza 1997; Buizza et al. 1999; Hersbach et al.
2000; Scherrer et al. 2004); for an overview see Buizza
et al. (2005).

Here we focus on short-range mesoscale forecasting.
Several authors have studied the use of a synoptic en-
semble, the 15-member NCEP Eta–Regional Spectral
Model (RSM) ensemble, for short-range forecasting
(Hamill and Colucci 1997; Hamill and Colucci 1998;
Stensrud et al. 1999). As was the case for medium-range
forecasting, the ensemble mean was more skillful for
short-range forecasting than the individual ensemble
members, but the spread–skill relationship was weak.
The first short-range mesoscale ensemble forecasting
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experiment was the Storm and Mesoscale Ensemble
Experiment (SAMEX; Hou et al. 2001). This found
that the ensemble mean was more skillful than the in-
dividual forecasts, and that there was a significant
spread-error correlation, with a correlation on the or-
der of 0.4. However, the ensemble was not well cali-
brated; see Figs. 8 and 9 of Hou et al. (2001).

Grimit and Mass (2002) described the University of
Washington mesoscale short-range ensemble system
for the Pacific Northwest (hereafter referred to as the
UW ensemble). This is a five-member multianalysis en-
semble consisting of different runs of the fifth-
generation Pennsylvania State University–National
Center for Atmospheric Research Mesoscale Model
(MM5), in which initial conditions are taken from dif-
ferent operational centers. The UW ensemble was run
at 36- and 12-km grid spacing, while the NCEP Short-
Range Ensemble Forecasting (SREF) has been run at
48 km. Like other authors, Grimit and Mass (2002)
found the ensemble mean to be more skillful than the
individual forecasts, and they reported a stronger
spread-error correlation than other studies, ranging up
to 0.6. Figure 1 is a scatterplot showing the spread-error
relationships for surface temperature and sea level
pressure for the UW ensemble for the same period as
that on which Grimit and Mass’ (2002) report was
based, namely January–June 2000. The spread-error

correlation for daily average absolute errors, averaging
spatially across the Pacific Northwest, was 0.18 for tem-
perature and 0.42 for sea level pressure; both correla-
tions were positive and the latter was highly statistically
significant. However, the verification rank histograms
(Anderson 1996; Talagrand et al. 1997; Hamill 2001) for
the same data, shown in Fig. 2, show the ensemble to be
underdispersive and hence uncalibrated. In this case,
the ensemble range based on five members would con-
tain 4/6, or 66.7%, of the observed values if the en-
semble were calibrated, that is, if the ensemble fore-
casts were a sample from the true predictive probability
density function (PDF), whereas in fact it contained
only 29% of them for temperature and 54% of them for
sea level pressure.

This behavior—an ensemble that yields a positive
spread-error correlation and hence useful predictions
of forecast skill, and yet is uncalibrated—is not unique
to the UW ensemble, as we have noted, and may seem
contradictory at first sight. On reflection, though, it is
not so surprising. There are several sources of uncer-
tainty in numerical weather forecasts, including uncer-
tainty about initial conditions, lateral boundary condi-
tions, and model physics, as well as discretization and
integration methods. Most ensembles capture only
some of these uncertainties, and then probably only
partially. Thus it seems inevitable that ensembles based

FIG. 1. Spread–skill relationship for daily average absolute errors in the 48-h forecast of (a)
surface temperature and (b) sea level pressure in the UW ensemble, Jan–Jun 2000. The vertical
axis shows the daily average of the absolute errors of the ensemble mean forecast, and the
horizontal axis shows the daily average of the difference between the highest and lowest forecasts
in the ensemble. The solid line is the least squares regression line. The correlation is 0.18 for
temperature and 0.42 for sea level pressure.
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purely on perturbing initial and lateral boundary con-
ditions, model physics, and integration methods will be
underdispersive to some extent. Because they do cap-
ture some of the important sources of uncertainty, how-
ever, it is reasonable to expect a positive spread-error
correlation, even when the ensemble is uncalibrated.
To obtain a calibrated forecast PDF, therefore, it seems
necessary to carry out some form of statistical postpro-
cessing, as suggested by Hamill and Colucci (1997,
1998).

Our goal in this article is to propose an approach for
obtaining calibrated and sharp predictive PDFs of fu-
ture weather quantities or events from the output of
ensembles that may not be themselves calibrated. By
calibrated we mean simply that intervals or events that
we declare to have probability P contain the truth, or
happen, a proportion P of the time on average in the
long run. Sharpness is a function of the widths of pre-
diction intervals. For example, a 90% prediction inter-
val verifying at a given time and place is defined by a
lower bound and an upper bound, such that the prob-
ability that the verifying observation lies between the
two bounds is declared to be 90%. By sharp we mean
that prediction intervals are narrower on average than
those obtained from climatology. Clearly, the sharper
the better. We adopt the principle that the goal of
probabilistic forecasting is to maximize sharpness sub-
ject to calibration (Gneiting et al. 2003).

To achieve this, we propose a statistical approach to
postprocessing ensemble forecasts, based on Bayesian
model averaging (BMA). This is a standard approach
to inference in the presence of multiple competing sta-
tistical models and has been widely applied in the social
and health sciences; here we extend it to forecasts from
dynamical models. In BMA, the overall forecast PDF is
a weighted average of forecast PDFs based on each of
the individual forecasts; the weights are the estimated
posterior model probabilities and reflect the models’
forecast skill in the training period, relative to the other
models. The weights can also provide a basis for select-

ing ensemble members: when they are small there is
little to be lost by removing the corresponding en-
semble member. This can be useful given the compu-
tational cost of running ensembles.

The BMA deterministic forecast is just a weighted
average of linear functions of the (possibly bias-
corrected) forecasts from the ensemble. The BMA
forecast PDF can be written as an analytic expression,
and it can also be represented as an equally weighted
ensemble of any desired size, by simulating potential
observations from the forecast PDF. The BMA forecast
variance decomposes into two components, corre-
sponding to between-model and within-model variance.
The ensemble spread captures only the first compo-
nent. This decomposition provides a theoretical expla-
nation and quantification of the behavior observed in
several ensembles, in which a positive spread-error cor-
relation coexists with a lack of calibration.

In section 2 we describe BMA, show how the BMA
model can be estimated, and give examples of BMA in
action. In section 3 we give BMA results for the UW
ensemble, in section 4 we give some results for simu-
lated ensembles, and in section 5 we make some con-
cluding remarks. While our experiments are with the
UW ensemble—that is, a mesoscale, single-model, mul-
tianalysis ensemble system—the idea applies to other
situations, including synoptic, perturbed observations,
singular vector, and bred and multimodel ensembles,
with small changes, as indicated below.

2. Bayesian model averaging

a. Basic ideas

Standard statistical analysis—such as, for example,
regression analysis—typically proceeds conditionally
on one assumed statistical model. Often this model has
been selected from among several possible competing
models for the data, and the data analyst is not sure that
it is the best one. Other plausible models could give

FIG. 2. Verification rank histograms for the UW ensemble 48-h forecasts of (a) surface
temperature and (b) sea level pressure, Jan–Jun 2000.
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different answers to the scientific question at hand. This
is a source of uncertainty in drawing conclusions, and
the typical approach, that of conditioning on a single
model deemed to be “best,” ignores this source of un-
certainty, thus underestimating uncertainty.

Bayesian model averaging (Leamer 1978; Kass and
Raftery 1995; Hoeting et al. 1999) overcomes this prob-
lem by conditioning, not on a single “best” model, but
on the entire ensemble of statistical models first con-
sidered. In the case of a quantity y to be forecast on
the basis of training data yT using K statistical models
M1, . . . , MK, the law of total probability tells us that the
forecast PDF, p(y), is given by

p�y� � �
k�1

K

p�y |Mk�p�Mk |yT�, �1�

where p(y |Mk) is the forecast PDF based on model Mk

alone, and p(Mk |yT ) is the posterior probability of
model Mk being correct given the training data, and
reflects how well model Mk fits the training data. The
posterior model probabilities add up to one, so that
�K

k�1 p(Mk |yT) � 1, and they can thus be viewed as
weights. The BMA PDF is a weighted average of the
conditional PDFs given each of the individual models,
weighted by their posterior model probabilities. BMA
possesses a range of theoretical optimality properties
and has shown good performance in a variety of simu-
lated and real data situations (Raftery and Zheng
2003).

We now extend BMA from statistical models to dy-
namical models. The basic idea is that for any given
forecast ensemble there is a “best” model, or member,
but we do not know what it is, and our uncertainty
about the best member is quantified by BMA. Once
again, we denote by y the quantity to be forecast. Each
deterministic forecast can be bias corrected using any
one of many possible bias-correction methods, yielding
a bias-corrected forecast fk. The forecast fk is then as-
sociated with a conditional PDF, gk(y |fk), which can be
interpreted as the conditional PDF of y conditional on
fk, given that fk is the best forecast in the ensemble. The
BMA predictive model is then

p�y | f1, . . . , fK� � �
k�1

K

wkgk�y | fk�, �2�

where wk is the posterior probability of forecast k being
the best one and is based on forecast k’s performance in
the training period. The wk’s are probabilities and so
they are nonnegative and add up to 1, that is, �K

k�1 wk

� 1. We describe how to estimate wk in the next sub-
section.

When forecasting temperature and sea level pres-
sure, it often seems reasonable to approximate the con-
ditional PDF by a normal distribution centered at a
linear function of the forecast, ak � bk fk, so that

gk(y | fk) is a normal PDF with mean ak � bkfk and
standard deviation �. We denote this situation by

y | fk � N�ak � bkfk, �2�, �3�

and we describe how to estimate � in the next subsec-
tion. In this case, the BMA predictive mean is just the
conditional expectation of y given the forecasts, namely

E �y | f1, . . . , fK	 � �
k�1

K

wk�ak � bkfk�. �4�

This can be viewed as a deterministic forecast in its own
right and can be compared with the individual forecasts
in the ensemble, or with the ensemble mean.

b. Estimation by maximum likelihood, the EM
algorithm, and minimum CRPS estimation

For convenience, we restrict attention to the situa-
tion where the conditional PDFs are approximated by
normal distributions. This seems to be reasonable for
some variables, such as temperature and sea level pres-
sure, but not for others, such as wind speed and pre-
cipitation; other distributions would be needed for the
latter. The basic ideas carry across directly to other
distributions also. We now consider how to estimate the
model parameters, ak, bk, wk, k � 1, . . . , K, and �2, on
the basis of a training dataset consisting of ensemble
forecasts and verifying observations, where the fore-
casts have been interpolated to the observation sites.
We denote space and time by subscripts s and t, so that
fkst denotes the kth forecast in the ensemble for place s
and time t, and yst denotes the corresponding verifica-
tion. Here we will take the forecast lead time to be
fixed; in practice we will estimate different models for
each forecast lead time.

We first estimate ak and bk by simple linear regres-
sion of yst on fkst for the training data. If the forecasts
have not yet been bias corrected, estimation of ak and
bk can be viewed as a very simple bias-correction pro-
cess, and it can also be considered as a very simple form
of model output statistics (Glahn and Lowry 1972;
Carter et al. 1989). Note that we retain the ak and bk in
(3) even if the forecasts have been bias corrected.

We estimate wk, k � 1, . . . , K, and � by maximum
likelihood (Fisher 1922) from the training data. The
likelihood function is defined as the probability of the
training data given the parameters to be estimated,
viewed as a function of the parameters. The maximum
likelihood estimator is the value of the parameter vec-
tor that maximizes the likelihood function, that is, the
value of the parameter vector under which the ob-
served data were most likely to have been observed.
The maximum likelihood estimator has many optimal-
ity properties (Casella and Berger 2001).

It is convenient to maximize the logarithm of the
likelihood function (or log-likelihood function) rather
than the likelihood function itself, for reasons of both
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algebraic simplicity and numerical stability; the same
parameter value that maximizes one also maximizes the
other. Assuming independence of forecast errors in
space and time, the log-likelihood function for model
(2) is

��w1, . . . , wk, �2� � �
s,t

log��
k�1

K

wkgk�yst | fkst��, �5�

where the summation is over values of s and t that index
observations in the training set. The independence as-
sumption is unlikely to hold, but estimates are unlikely
to be very sensitive to this assumption, because we are
estimating the conditional distribution for a scalar ob-
servation given forecasts, rather than for several obser-
vations simultaneously. This cannot be maximized ana-
lytically, and it is complex to maximize numerically us-
ing direct nonlinear maximization methods such as
Newton–Raphson and its variants. Instead, we maxi-
mize it using the expectation-maximization (EM) algo-
rithm (Dempster et al. 1977; McLachlan and Krishnan
1997).

The EM algorithm is a method for finding the maxi-
mum likelihood estimator when the problem can be
recast in terms of unobserved quantities such that, if we
knew what they were, the estimation problem would be
straightforward. The BMA model (2) is a finite mixture
model (McLachlan and Peel 2000). Here we introduce
the unobserved quantities zkst, where zkst � 1 if en-
semble member k is the best forecast for verification
site s and time t, and zkst � 0 otherwise. For each (s, t),
only one of {z1st, . . . , zKst} is equal to 1; the others are
all zero.

The EM algorithm is iterative and alternates between
two steps, the E (or expectation) step and the M (or
maximization) step. It starts with an initial guess, 
(0),
for the parameter vector 
. In the E step, the zkst are
estimated given the current guess for the parameters;
the estimates of the zkst are not necessarily integers,
even though the true values are 0 or 1. In the M step, 

is estimated given the current values of the zkst.

For the normal BMA model given by (2) and (3), the
E step is

ẑkst
�j� �

wkg�yst | fkst, �� j�1��

�
i�1

K

wig�yst | fist, �� j�1��

, �6�

where the superscript j refers to the jth iteration of the
EM algorithm, and g(yst | fkst, �( j�1)) is a normal density
with mean ak � bkfkst and standard deviation �( j�1)

evaluated at yst. The M step then consists of estimating
the wk and � using as weights the current estimates of
zkst, namely ẑ( j)

kst. Thus

wk
� j� �

1
n �

s,t
ẑkst

� j� ,

�2� j� �
1
n �

s,t
�
k�1

K

ẑkst
� j� �yst � fkst�

2,

where n is the number of observations in the training
set [i.e., the number of distinct values of (s, t)].

The E and M steps are then iterated to convergence,
which we defined as changes no greater than some
small tolerances in any of the log likelihood, the pa-
rameter values, or the ẑ( j)

kst in one iteration. The log
likelihood is guaranteed to increase at each EM itera-
tion (Wu 1983), which implies that in general it con-
verges to a local maximum of the likelihood. Conver-
gence to a global maximum cannot be guaranteed, so
the solution reached by the algorithm can be sensitive
to the starting values. Starting values based on past
experience usually give good solutions.

We finally refine our estimate of � so that it opti-
mizes the continuous ranked probability score (CRPS)
for the training data. The CRPS is the integral of the
Brier scores at all possible threshold values for the con-
tinuous predictand (Hersbach 2000). As such, it is an
appropriate score when interest focuses on prediction
intervals. We do this by searching numerically over a
range of values of �, centered at the maximum likeli-
hood estimate, keeping the other parameters fixed.

In our implementation, the training set consists of a
sliding window of forecasts and observations for the
previous m days. We discuss the choice of m later.

c. The BMA predictive variance decomposition and
the spread-error correlation

The BMA predictive variance of yst given the en-
semble of forecasts can be written as

Var�yst | f1st, . . . , fKst� � �
k�1

K

wk��ak � bkfkst�

� �
i�1

K

wi�ai � bifist��2

� �2

�7�

(Raftery 1993). The right-hand side has two terms, the
first of which summarizes between-forecast spread, and
the second (equal to �2) measures the expected uncer-
tainty conditional on one of the forecasts being best.
We can summarize this verbally as

Predictive Variance � Between-Forecast Variance

� Within-Forecast Variance.

�8�

The first term represents the ensemble spread. Thus
one would expect to see a spread-error correlation,
since the predictive variance includes the spread as a
component. But it also implies that using the ensemble
spread alone may underestimate uncertainty, because it
ignores the second term on the right-hand side of (7) or
(8).
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Thus BMA predicts a spread-error correlation, but it
also accounts for the possibility that ensembles may be
underdispersive. This is exactly what we observed in
the UW ensemble, and it is also the case in other en-
sembles. BMA provides a theoretical framework for
understanding these apparently contradictory phenom-
ena and suggests ways to remedy them.

d. Example of BMA predictive PDF

To illustrate the operation of BMA, we first describe
the prediction of just one quantity at one place and
time; later we will give aggregate performance results.
We consider the 48-h forecast of temperature at Pack-
wood, Washington, initialized at 0000 UTC on 12 June
2000 and verifying at 0000 UTC on 14 June 2000. As

described below, a 25-day training period was used, in
this case consisting of forecasts and observations in the
0000 UTC cycle from 16 April to 9 June 2000. No bias
correction was applied, apart from the estimation of the
ak and the bk in the model, which can be viewed as a
simple linear bias correction.

Table 1 shows the forecasts, the bias-corrected fore-
casts, the BMA weights for the five members of the
UW MM5 ensemble, and the observation. There was
strong disagreement among the ensemble members:
two of them (AVN-MM5 and NOGAPS-MM5) were
around 284 K, while the other three (ETA-MM5,
NGM-MM5, and GEM-MM5) were around 291 K. This
difference of 7 K is quite large. The verifying observa-
tion turned out to be outside the ensemble range, as
happened for 71% of the cases in our dataset. The veri-

FIG. 3. BMA predictive PDF (thick curve) and its five components (thin curves) for the 48-h surface temperature
forecast at Packwood, WA, initialized at 0000 UTC on 12 Jun 2000. Also shown are the ensemble member forecasts
and range (solid horizontal line and bullets), the BMA 90% prediction interval (dotted lines), and the verifying
observation (solid vertical line).

TABLE 1. Forty-eight-hour UW-MM5 ensemble forecasts of surface temperature at Packwood, WA, initialized at 0000 UTC on 12 Jun
2000, bias-corrected forecasts, BMA weights, and verifying observation. The kth bias-corrected forecast is equal to ak � bk fk, where
fk is the kth forecast. Initial conditions (ICs) and lateral boundary conditions (LBCs) were obtained from AVN, the NGM Regional
Data Assimilation System, and the ETA Data Assimilation System, all run by NCEP; the GEM analysis run by the CMC; and the
NOGAPS analysis run by FNMOC. See Grimit and Mass (2002) for details.

MM5 initialization (source) AVN (NCEP) ETA (NCEP) NGM (NCEP) GEM (CMC) NOGAPS (FNMOC)

Forecast 284.5 290.6 291.7 290.0 283.9
Bias-corrected forecast 285.2 291.2 292.4 290.8 285.5
BMA weight 0.38 0.27 0.03 0.24 0.08
Observation 292.6
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fying observation was well forecast by the three higher
forecasts (especially after the linear bias correction)
and was far from the two lower forecasts.

Figure 3 shows the BMA predictive PDF. This PDF
(shown as the thick curve in the figure) is a weighted
sum of five normal PDFs (the components are the five
thin lines). The distribution is bimodal, reflecting the
fact that there are two groups of forecasts that disagree
with one another. The right mode is centered around
the cluster of three higher forecasts (after the linear
bias correction), while the left mode is centered around
the cluster of two lower forecasts. The observation fell
within the 90% BMA prediction interval, even though
it was outside the ensemble range.

The BMA PDF can also be represented as an un-
weighted ensemble of any desired size, simply by simu-
lating from the predictive distribution (2). To simulate
M values from the distribution (2), one can proceed as
follows:

Repeat M times:

1) Generate a value of k from the numbers {1, . . . , K }
with probabilities {w1, . . . , wK}.

2) Generate a value of y from the PDF gk(y | fk). In the
present case this will be a N(ak � bkfk, �2) distri-
bution.

Figure 4 shows a BMA ensemble of size M � 100 gen-
erated in this way. In this case, 87 of the 100 ensemble
members lay within the exact 90% prediction interval.
This differs slightly from the expected number of 90,
but the difference is well within the range of what
would be observed by chance.

The weights, wk, reflect the ensemble members’ over-
all performance over the training period, relative to the
other members. Their rank order tends to be similar to
that of the forecast root-mean-square errors (RMSEs),
but this is not a direct relationship; they also reflect the
correlations between the forecasts. Table 2 shows the
RMSEs of both the raw and bias-corrected forecasts
over the training period for the Packwood, Washington,
forecast that we have been looking at, together with the
BMA weights. With one exception, the rank order of
the weights is the same as that of the rmses (reversed).
The weights vary more than the RMSEs , however. This
reflects the fact that the forecasts are highly correlated,

FIG. 4. Ensemble of 100 equally likely values from the BMA PDF (2) for the Packwood
surface temperature forecast. Also shown are the ensemble member forecasts and range
(solid horizontal line and bullets), the BMA 90% prediction interval (dotted lines), and the
verifying observation (solid vertical line).

TABLE 2. RMSEs, bias-corrected RMSEs, and BMA weights for the forecasts over the 25-day training period preceding
12 Jun 2000.

MM5 initialization (source) AVN (NCEP) ETA (NCEP) NGM (NCEP) GEM (CMC) NOGAPS (FNMOC)

RMSE 3.16 3.20 3.28 3.42 3.74
Bias-corrected RMSE 3.11 3.17 3.22 3.36 3.49
BMA weight 0.38 0.27 0.03 0.24 0.08
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as shown in Table 3. The AVN-MM5 forecast had the
lowest RMSE and the highest BMA weight, at 0.38.
The second ranked forecast, ETA-MM5, had an RMSE
that was not much worse than AVN-MM5, but a much
lower BMA weight, at 0.27. This reflects the fact that
once one knows the AVN-MM5 forecast, the additional
information provided by the ETA-MM5 forecast is
much less than it would be if the two forecasts were
uncorrelated.

The one exception was the NGM-MM5 model, which
had the third best RMSE, but the lowest BMA weight,
at 0.03. One can understand why this occurred by look-

FIG. 5. BMA predictive PDFs for (a) an averagely dispersed ensemble and (b) an
underdispersed ensemble. Both are for temperature at Packwood on different days. The
same symbols are used as in Fig. 3.

TABLE 3. Correlations between the surface temperature fore-
casts over the 25-day training period preceding 12 Jun 2000. The
three NCEP-based forecasts (AVN-MM5, ETA-MM5, and
NGM-MM5) are grouped together. They are more highly corre-
lated with one another than with the forecasts from the other
forecasting organizations (GEM from CMC, and NOGAPS from
FNMOC).

AVN ETA NGM GEM NOGAPS

AVN-MM5 1.00 0.95 0.95 0.90 0.92
ETA-MM5 0.95 1.00 0.98 0.91 0.91
NGM-MM5 0.95 0.98 1.00 0.91 0.91
GEM-MM5 0.90 0.91 0.91 1.00 0.89
NOGAPS-MM5 0.92 .91 0.91 0.89 1.00
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ing again at the correlations between the forecasts in
Table 3. The first three forecasts in the table, AVN-
MM5, ETA-MM5, and NGM-MM5, are based on ini-
tializations produced by the same organization, NCEP.
The remaining two forecasts are based on initializa-
tions from other organizations: GEM-MM5 from the
Canadian Meteorological Centre (CMC) and
NOGAPS-MM5 from the U.S. Navy [Fleet Numerical
Meteorology and Oceanography Center (FNMOC)].
The correlations are in line with this: the three NCEP
forecasts are very highly correlated, with correlations of
0.95–0.98, while the other two forecasts have correla-
tions with one another and with the NCEP forecasts
that are lower, even though still high. Thus once one
knows the AVN-MM5 and ETA-MM5 forecasts, the
NGM-MM5 forecast contributes very little additional
information, because it is very highly correlated with

the AVN-MM5 and ETA-MM5 forecasts, and of lower
quality. On the other hand, the GEM-MM5 and
NOGAPS-MM5 forecasts contribute more additional
information because they are less correlated with the
others, although they have worse RMSEs than the
NGM-MM5 forecast.

Figure 5 shows the BMA predictive PDFs for two
other days at Packwood. The first, in Fig. 5a, shows an
ensemble with an average amount of dispersion, while
the second, in Fig. 5b, shows an ensemble with a smaller
than average amount of dispersion. Both are unimodal,
as indeed were the majority of BMA PDFs in our
dataset. Figure 5b illustrates the way in which BMA can
yield reasonable intervals and PDFs, even when the
ensemble is highly concentrated.

Figure 6 shows the BMA probabilistic 48-h forecast
of temperature initialized at 0000 UTC on 12 June 2000

FIG. 6. BMA probabilistic 48-h forecast of surface temperature in the Pacific Northwest, initialized at 0000 UTC on 12 Jun 2000: (a)
BMA deterministic forecast, (b) BMA margin of error, defined as half the width of the 90% prediction interval, (c) lower, and (d) upper
bound of the 90% prediction interval.
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for the entire Pacific Northwest. Figure 6a shows the
deterministic BMA forecast. Figure 6b shows the mar-
gin of error of the 90% prediction interval, defined as
half the width of the interval. Roughly speaking, the
prediction interval is approximately equal to the deter-
ministic forecast plus or minus the margin of error, and
the margin of error plot indicates where the uncertainty
is greatest. Figures 6c and 6d display the lower and
upper bounds of the 90% prediction intervals. These
four plots show one way to summarize the probabilistic
forecast of an entire field visually.

3. Results

We now give results of the application of BMA to
48-h forecasts of 2-m temperature in the Pacific North-
west for the 0000 UTC cycle in January–June 2000,
using the UW-MM5 ensemble described by Grimit and
Mass (2002). We first describe how we chose the length
of the training period, then we give the main results,
and finally we outline how the results could be used to
select the members of a possibly reduced ensemble. We

also give summary results for sea level pressure over
the same period.

a. Length of training period

How many days should be used in the sliding-window
training period to estimate the BMA weights, variance,
and bias-correction coefficients? There is a trade-off
here, and no automatic way of making it. Both weather
patterns and model specification change over time, and
there is an advantage to using a short training period so
as to be able to adapt rapidly to such changes. In par-
ticular, the relative performance of the models changes.
On the other hand, the longer the training period, the
better the BMA parameters are estimated.

In making our choice, we were guided by the prin-
ciple that probabilistic forecasting methods should be
designed to maximize sharpness subject to calibration,
that is, to make the prediction intervals as short as pos-
sible subject to their having the right coverage (Gneit-
ing et al. 2003). We also tend toward making the train-
ing period as short as possible so as to be able to adapt
as quickly as possible to the changing relative perfor-

FIG. 7. Comparison of training period lengths for surface temperature: (a) coverage of 90% prediction intervals; (b) average width
of 90% prediction intervals; (c) coverage of 66.7% prediction intervals; (d) average width of 66.7% prediction intervals; (e) RMSE of
BMA deterministic forecasts; (f) MAE; (g) ignorance score; and (h) CRPS.
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mance of ensemble members, lengthening it only if do-
ing so seems to confer a clear advantage.

Here we focus on 66.7% and 90% prediction inter-
vals. We considered training periods of lengths 10, 15,
20, . . . , 60 calendar days. For comparability, the same
verifications were used in evaluating all the training
periods, and the verifications for the first 63 days were
not used for evaluation. For some days the data were
missing (Grimit and Mass 2002), so that the number of
calendar days spanned by the training dataset was typi-
cally larger than the actual number of days of training
data used.

Figure 7a shows the coverage of BMA 90% predic-
tion intervals. The coverage increases with the number
of training days, hitting the correct 90.0% at 25 days,
and increasing beyond that. Figure 7b shows the aver-
age width of BMA 90% prediction intervals. This in-
creases with the number of training days, indicating
that shorter training periods yield sharper forecasts.
Figures 7c and 7d show the same quantities for the
66.7% intervals, with similar conclusions.

Figures 7e and 7f show the RMSE and the mean
absolute error (MAE) of BMA deterministic forecasts
corresponding to different lengths of the training pe-
riod. These decrease substantially as the number of
training days increases, up to 25 days, and change little
as the number of days is increased beyond 25. Figure 7g

shows the ignorance score for BMA. This is the average
of the negative of the natural logarithms of the BMA
PDFs evaluated at the observations. It was proposed by
Good (1952), and its use in the present context was
suggested by Roulston and Smith (2002). Smaller
scores are preferred. This decreases sharply at first, and
then more slowly. Figure 7h shows the CRPS. This also
decreases with the number of training days, sharply
from 10 to 25 days, and flattens out after that.

To summarize these results, it seems that there are
substantial gains in increasing the training period up to
25 days, and that beyond that there is little gain. We
have therefore used 25 days here. It seems likely that
different training periods would be best for other vari-
ables, forecast cycles, forecast lead times, time periods,
and regions. Further research on how best to choose the
length of the training period is needed, and a good
automatic way of doing this would be useful.

b. Results

We now give results for BMA, using the same evalu-
ation dataset as was used to compare the different
training periods. The probability integral transform
(PIT) histogram for BMA is shown in Fig. 8. This is a
continuous analog of the verification rank histogram.
To compute the PIT histogram we proceeded as fol-
lows. For each forecast initialization time at each sta-

FIG. 8. PIT histogram for BMA for surface temperature.
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tion, we computed the BMA cumulative distribution
function (CDF), and we found its value at the verifying
observation. We then formed the histogram of these
BMA CDF values. This should be uniform if the pre-
dictive PDF is calibrated; it can be compared directly
with the verification rank histogram of the underlying
ensemble in Fig. 2a. As can be seen, it was reasonably
well calibrated, and clearly much more so than the en-
semble itself.

Figure 9 shows the BMA weights for the five en-
semble members over the evaluation period. These var-
ied relatively little. The NGM-MM5 forecast had low
weights throughout, suggesting that it is not useful rela-
tive to the other four ensemble members.

Table 4 shows the coverage of various prediction in-
tervals. We included the prediction interval from

sample climatology, that is, from the marginal distribu-
tion of our full dataset; this interval is the same for each
day and is useful as a baseline for methods that use the
numerical weather predictions. The climatological fore-
cast is of course well calibrated, but at the expense of
producing very wide intervals, as we will see. The en-
semble range is underdispersive, as we have already
seen. The BMA intervals are very close to having the
right coverage.

Table 5 shows the average widths of the prediction
intervals considered. The ensemble range was much
narrower on average than the climatological 66.7% in-
terval, but the price of this was that the ensemble range
was far from being a calibrated interval and was under-
dispersive. The BMA 66.7% interval was wider on av-
erage than the ensemble range, but still much less so

FIG. 9. BMA weights for the five models over the evaluation period for surface temperature.

TABLE 4. Coverage of prediction intervals for surface
temperature (%).

Interval 66.7% interval 90% interval

Sample climatology 66.7 90.0
Ensemble range 28.7 —
BMA 66.9 90.0

TABLE 5. Average width of prediction intervals for surface
temperature.

Interval 66.7% interval 90% interval

Sample climatology 17.2 28.3
Ensemble range 2.5 —
BMA 5.3 9.6
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than sample climatology, and it is calibrated, unlike the
ensemble range. The climatological and BMA 90% in-
tervals were both approximately calibrated, but the
BMA intervals were 69% narrower on average.

Table 6 shows the RMSEs and MAEs of the various
deterministic forecasts considered over the evaluation
period. The numerical weather prediction forecasts
performed much better than the forecast from sample
climatology (with all forecasts equal to the sample
mean), and among these the AVN-MM5 forecast was
best on average. The bias-corrected forecasts, ak �
bkfkst, have lower RMSEs and MAEs than the raw fore-
casts, by about 5%. The ensemble mean is as good as
any of the raw forecasts, but not as good as the best
bias-corrected forecasts. The BMA deterministic fore-
cast given by (4) performed better than any of the other
12 forecasts considered, in terms of both RMSE and
MAE. In terms of MAE, it was better than sample
climatology by 71%, the best single forecast (AVN-
MM5) by 8%, the best single bias-corrected forecast by
3%, and the ensemble mean by 9%. The results were
similar in terms of RMSE.

c. Selecting ensemble members: Results for a
reduced ensemble

Ensemble forecasts are very demanding in terms of
computational time, and so it is important that the

members of the ensemble be carefully selected. The
number of ensemble runs that can be done by an orga-
nization is limited, and large ensembles make demands
on computer and personnel resources that could be
used for other purposes.

Our approach provides a way of selecting ensemble
members in situations where the individual ensemble
members come from different, identifiable sources. The
BMA weights provide a measure of the relative useful-
ness of the ensemble members, and so it would seem
reasonable to consider eliminating ensemble members
that consistently have low weights. Over our evaluation
period, the NGM-MM5 forecasts had low weights on
average, averaging under 0.04. One might then consider
eliminating this member, and using instead a reduced
four-member ensemble.

Table 7 compares the results for the five-member and
the reduced four-member ensemble over the evaluation
period. They are almost indistinguishable, and the ig-
norance score actually improves slightly when the least
useful member is removed. This would suggest that this
member can be removed with little cost in terms of
performance, and the operational gain could be consid-
erable. Indeed, the NGM-MM5 model was removed
from the UW ensemble shortly after the end of our test
period, in August 2000. Before making such a decision
in general, however, it would be necessary to study the
BMA weights over a longer period and for all the vari-
ables and forecast lead times of interest. Ensemble
members that contribute little to forecasting one vari-
able might be useful for others.

d. Results for sea level pressure

We now briefly summarize the results for 48-h fore-
casts of sea level pressure for the same region and time
period. These are qualitatively similar to those for 2-m
temperature. The results for choice of training period
are similar to those for temperature, and again point to
a 25-day training period as being best. The unit used is
the millibar (mb).

Table 8 shows the coverage of the various prediction
intervals. The ensemble range is underdispersive, but
less so than for temperature, while BMA is well cali-
brated. Table 9 shows the average widths of the pre-
diction intervals for sea level pressure. The ensemble
range is narrow but, as we have seen, this is at the cost
of not being well calibrated. The BMA intervals are

TABLE 6. RMSEs and MAEs of deterministic forecasts for sur-
face temperature. The bias-corrected forecast for the kth en-
semble member at place s and time t is equal to ak � bk fkst.

Forecast RMSE MAE

Sample climatology 9.58 7.69
Raw forecasts

AVN-MM5 3.15 2.45
ETA-MM5 3.23 2.52
NGM-MM5 3.28 2.56
CMC-GEM-MM5 3.40 2.64
NOGAPS-MM5 3.76 2.96

Bias-corrected forecasts
Bias-corrected AVN-MM5 3.01 2.32
Bias-corrected ETA-MM5 3.11 2.40
Bias-corrected NGM-MM5 3.14 2.43
Bias-corrected CMC-GEM-MM5 3.25 2.49
Bias-corrected NOGAPS-MM5 3.25 2.50

Ensemble forecasts
Ensemble mean 3.18 2.49
BMA 2.94 2.26

TABLE 7. Comparison of BMA probabilistic forecasts from the five-member ensemble and the reduced four-member ensemble for
surface temperature.

90% prediction interval

Average Ignorance
Coverage width RMSE MAE score CRPS

Five-member ensemble 90.0% 9.6 2.94 2.26 2.55 1.62
Four-member ensemble 90.0% 9.6 2.93 2.26 2.55 1.62
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63% narrower than the intervals from sample climatol-
ogy. Sample climatology seems like a more useful base-
line for sea level pressure than for temperature,
because sea level pressure is a synoptic variable with
relatively little sensitivity to topography and a weak
seasonal effect, if any. So the good performance of
BMA relative to sample climatology, achieving consid-
erable sharpness while remaining calibrated, is striking.

Table 10 shows the RMSEs and MAEs of the various
deterministic forecasts. Once again, the BMA deter-
ministic forecast outperforms the other 12 forecasts
considered in terms of both RMSE and MAE. In terms
of MAE, it is 56% better than sample climatology, 7%
better than the best single forecast (AVN-MM5), 2%
better than the best bias-corrected forecast, and 3%
better than the ensemble mean.

4. Experiments with simulated ensembles

We now report the results of several experiments
with simulated ensembles. Some of these relate to cali-
brated ensembles. Most ensembles in current use ap-
pear to be underdispersive, so the current primary need
is for methods that work well with underdispersive en-
sembles. However, as ensembles become better, it will
become critical that postprocessing methods work well
with calibrated ensembles as well as underdispersive
ones.

Our experiments use the same data structure as the
temperature dataset we have already considered. The
observations and forecasts in the temperature dataset
are replaced by simulated values. BMA is implemented
as before, using 25 training days to estimate the model.

a. Experiment 1: A calibrated ensemble with
varying means and variances

Our first experiment simulated a calibrated ensemble
in which the true predictive PDF for each day and sta-
tion is normally distributed, with its own mean and vari-
ance. The means were themselves simulated from a dis-

tribution, which was chosen to reflect the temperature
observations and forecasts in the ensemble we have
analyzed; the same was true for the variances. For each
day and station, six observations were drawn from the
normal distribution for that day and station; five of
these were the ensemble forecast members, and one
was the verifying observation. Thus the ensemble was
calibrated by design.

The simulation was implemented as follows. The
mean, �st, for station s on day t was simulated from a
normal distribution with mean � and variance �2

�, a
situation we denote by �st � N(�, �2

�). The variance, st,
for station s on day t, was simulated from a chi-square
distribution with 12 degrees of freedom, multiplied by
/12, a situation we denote by st � �2

12/12. We chose
� � 286, �2

� � 66.8, and  � 6.0. This ensured that the
mean and variance of the observations and the fore-
casts, and the average RMSE of the forecasts, were
close to those in the data. With this setup, the correla-
tion between the observation and any single forecast is
0.92, and this is also equal to the correlation between
any two ensemble members. The setups for all six ex-
periments, including this one, are summarized in Ta-
ble 11.

The results are shown in Table 12. The RMSE for
BMA is considerably smaller than for sample climatol-
ogy, or for any single forecast. The 66.7% prediction
interval is slightly overdispersed, but it is no wider on
average than the ensemble range, which also has nomi-
nal coverage 66.7%. The 90% BMA prediction interval
has coverage 91.7% and is much narrower on average
than the climatological interval: 9.4 compared to 28.1,
or 67% shorter. The ensemble does not provide a 90%
prediction interval directly, of course. The BMA PIT
histogram is shown in Fig. 10a.

Figure 11 gives an example of how BMA achieves
this result with a calibrated ensemble. The ensemble
members are essentially equally weighted, and the
BMA PDF is in this case close to being a normal dis-

TABLE 9. Average width of prediction intervals for sea level
pressure.

Interval 66.7% interval 90% interval

Sample climatology 13.2 21.8
Ensemble range 3.9 —
BMA 4.9 8.3

TABLE 10. RMSEs of deterministic forecasts for sea level
pressure.

Forecast RMSE MAE

Sample climatology 5.70 4.61
Raw forecasts

AVN-MM5 2.90 2.20
ETA-MM5 3.25 2.50
NGM-MM5 3.40 2.70
CMC-GEM-MM5 3.00 2.35
NOGAPS-MM5 3.21 2.50

Bias-corrected forecasts
Bias-corrected AVN-MM5 2.66 2.09
Bias-corrected ETA-MM5 3.14 2.40
Bias-corrected NGM-MM5 3.20 2.47
Bias-corrected CMC-GEM-MM5 2.92 2.29
Bias-corrected NOGAPS-MM5 2.67 2.11

Ensemble forecasts
Ensemble mean 2.73 2.11
BMA 2.59 2.05

TABLE 8. Coverage of prediction intervals for sea level
pressure (%).

Interval 66.7% interval 90% interval

Sample climatology 66.7 90.0
Ensemble range 53.9 —
BMA 65.4 90.4
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tribution itself. The parameters bk in Eq. (3) are about
0.90, so that the forecasts are slightly shrunk toward the
mean, largely avoiding overdispersion.

b. Experiments 2, 3, and 4: Uncorrelated
experiments

We now consider three experiments in which the true
predictive PDF was N(0, 1). In the first of these, ex-
periment 2, the ensemble members were also drawn
from N(0, 1), so this was a calibrated ensemble. How-
ever, the forecasts and the observations were uncorre-
lated in this case, and so the ensemble was uninforma-
tive. While one would hope that this is a rare situation,
it can be viewed as a limiting case of a forecast with
little skill. This does arise; for example, in the Pacific
Northwest, wind speed forecasts have relatively little
skill because of the Pacific data void and the mountain-
ous terrain. It seems desirable that a statistical postpro-
cessing method would accurately convey uncertainty in
this kind of situation.

In experiment 3, the ensemble members were drawn
from N(0, 0.25), so this was an underdispersive unin-
formative ensemble, while in experiment 4 they were

drawn from N(0, 4), so this was an overdispersive un-
informative ensemble.

The results are shown in Table 12. For experiment 2,
the calibrated ensemble, BMA was well calibrated, and
actually had 66.7% prediction intervals that were
shorter on average than the ensemble range. In this
case, the parameters bk in Eq. (3) are close to zero, and
BMA essentially cuts back automatically to climatol-
ogy, which is the best one can do in this situation.

For experiments 3 and 4, the under- and overdisper-
sive ensembles, the ensemble range was very poorly
calibrated, as one would expect, but BMA remained
well calibrated, as can be seen from the coverages in
Table 12 and the PIT histograms in Fig. 10.

c. Experiments 5 and 6: Under- and overdispersive
ensembles with varying means and variances

Experiment 5 was a modified version of experiment
1, modified so that the ensemble is underdispersive.
Experiment 6 was also a modified version of experi-
ment 1, this time modified to make it overdispersive.

As can be seen from Table 12, the ensemble range
was very poorly calibrated in both cases, not surpris-
ingly. The coverage of the ensemble range for experi-
ment 5 was similar to that observed in the actual data
we analyzed; thus this is perhaps the most relevant ex-
periment to the actual ensemble forecasting data we
have been looking at. For experiment 5, BMA is well
calibrated and sharp. For experiment 6, BMA is much
better calibrated than the ensemble range, and much
sharper than climatology, but it is still slighly overdis-
persed. This seems hard to avoid when the ensemble
itself is highly overdispersive, but this is rarely observed
in practice.

Figure 11b gives an example of a BMA PDF for the
underdispersive ensemble. Essentially, BMA spreads
out the ensemble range. Figure 11c gives an example of
a BMA PDF for the overdispersive ensemble. Here the
PDF is slightly multimodal, reflecting the fact that when
the ensemble is very dispersed, the forecasts are to
some extent in conflict with one another.

5. Discussion

We have proposed a new method for statistical post-
processing of ensemble output to produce calibrated

TABLE 11. Summary of experiments with simulated ensembles. Shown are the mean and variance of the true predictive PDF and the
mean and variance of the forecast ensemble. All observations and forecast ensemble members were simulated from normal distribu-
tions. Note that �st and st were simulated independently for each day t and station s, as follows: �st � N(�, � 2

�), st � � 2
12/12, where

� � 286, �2
� � 66.8, and  � 6.0.

No. True mean True variance Ensemble mean Ensemble variance Description of ensemble

1 �st st �st st Calibrated, with varying mean and variance
2 0 1 0 1 Calibrated, uncorrelated
3 0 1 0 0.25 Underdispersive, uncorrelated
4 0 1 0 4 Overdispersive, uncorrelated
5 �st st �st 0.25 st Underdispersive, with varying mean and variance
6 �st st �st 4 st Overdispersive, with varying mean and variance

TABLE 12. Results of experiments with simulated ensembles.

Experiment

1 2 3 4 5 6

RMSE
Climatology 8.5 1.0 1.0 1.0 8.5 8.5
Single forecast 3.5 1.4 1.1 2.2 2.5 10.1
BMA 2.6 1.0 1.0 1.0 2.5 3.7

66.7% interval: Coverage (%)
Climatology 66.7 66.7 66.7 66.7 66.7 66.7
Ensemble range 66.7 66.7 41.5 84.6 22.8 91.3
BMA 71.7 66.9 66.4 66.5 68.4 72.0

66.7% interval: Width
Climatology 16.5 1.9 1.9 1.9 16.5 16.5
Ensemble range 5.6 2.3 1.2 4.7 1.4 22.3
BMA 5.6 1.9 1.9 1.9 4.8 8.2

90% interval: Coverage (%)
Climatology 90.0 90.0 90.0 90.0 90.0 90.0
BMA 91.7 90.1 90.0 90.1 90.4 91.9

90% interval: Width
Climatology 28.1 3.3 3.3 3.3 28.1 28.1

MAY 2005 R A F T E R Y E T A L . 1169



and sharp predictive PDFs. It is based on Bayesian
model averaging, a statistical method for combining
forecasts from different models and analyses, and pro-
vides a theoretical explanation of the empirical phe-
nomenon of ensembles exhibiting a spread-error corre-
lation while still being underdispersive. In our case
study, the BMA PDFs were much better calibrated
than the ensemble itself and produced prediction inter-
vals that were much sharper than those produced by
sample climatology. In addition, the BMA determinis-
tic forecast had a lower RMSE than any of the indi-
vidual ensemble members, and also than the ensemble
mean, although the latter was also better than any of
the ensemble members.

Our approach uses observations and forecasts to es-
timate the BMA model for a spatial region and is thus
applicable to the production of probabilistic forecasts
on a grid. In our experiment we applied it to the UW-
MM5 ensemble’s 12-km domain, the Pacific Northwest,
and it would seem desirable that the model be esti-
mated separately for different spatial regions. Clearly
such regions should be fairly homogeneous with respect
to the variable being forecast, but precisely how to de-

termine them needs further research. We have used
observations to estimate the model, but it would be
possible to do so also using an analysis, and this may be
preferable in regions where there are few observational
assets.

Our experiments here have been with short-range
mesoscale probabilistic forecasting from multianalysis
ensembles, but it would seem feasible also to apply the
idea to other situations, including medium-range and
synoptic forecasting, and to perturbed observations,
singular vector, bred, and poor man’s ensembles. Our
implementation has been for the situation where the
ensemble members come from clearly distinguishable
sources. In other cases, such as the current synoptic
NCEP and ECMWF ensembles, it may be more appro-
priate to consider some or all of the ensemble members
as being from the same source, and hence to treat them
equally. This can be accommodated within our ap-
proach with a small change in the model: for ensemble
members viewed as equivalent, the BMA weights wk in
(2) would be constrained to be equal. The EM algo-
rithm can still be used, with a small modification.

In our experiments we have assumed that the condi-

FIG. 10. PIT histograms for BMA for the six simulated ensemble experiments, ordered by row.
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tional densities gk(y | fk) in the BMA model (2) can rea-
sonably be taken to be normal densities. This works
well for surface temperature, and in the experiments
that we summarized above it also worked well for sea
level pressure data. However, this may not apply so
directly to wind speed and precipitation data, because
they tend to have a positive probability of being equal
to or very close to zero, and because their distribution
tends to be skewed. The BMA approach could be ex-
tended to these situations by using a nonnormal condi-
tional distribution gk(y| fk) in (2). It has been common
to model wind speed using a Weibull distribution and
precipitation using a gamma distribution, and it may be
necessary to augment these with a component repre-
senting a positive probability of being equal to zero.
This can be done within the framework of generalized
linear models (McCullagh and Nelder 1989), and one
example of how to model precipitation in this way was
given by Stern and Coe (1984).

One way to improve the performance of this method
is to bias correct the forecasts before applying BMA.
The linear regression of observations on forecasts is
incorporated in our implementation of the BMA
method and can be viewed as a very simple bias cor-
rection, but it is possible to do much better. Model
output statistics (MOS) is the dominant approach to

bias correction and may give improved results (Wilks
1995). Approaches based on spatial and temporal
neighborhoods have also been proposed, for example,
by Eckel and Mass (2003). Note that to be useful in our
context, bias-correction methods need to be applicable
to grid-based forecasts and not just to forecasts at ob-
servation sites. It is clear from (2) that the MOS and
neighborhood bias-correction methods mentioned can
be combined with BMA to produce probabilistic fore-
casts.

Our method produces a predictive PDF for one lo-
cation, but it does not reproduce the spatial correlation
properties of error fields. Various ways of creating en-
sembles of entire fields that reproduce the spatial cor-
relation of the error field have been proposed for the
situation where just one numerical weather prediction
model and initialization is used (Houtekamer 1993;
Houtekamer and Mitchell 1998, 2001; Gel et al. 2004).
Such methods could be combined with the present pro-
posal to produce multimodel and/or multianalysis en-
sembles that reproduce spatial correlation of error
fields by creating ensembles of fields corresponding to
each ensemble member and simulating a number of
fields from each of these ensembles that is proportional
to the corresponding BMA weight.

Hamill and Colucci (1997, 1998) proposed a statisti-

FIG. 11. Example BMA PDFs for experiments with simulated
ensembles with varying means and variances: (a) expt 1 (cali-
brated ensemble); (b) expt 5 (underdispersed ensemble); and (c)
expt 6 (overdispersed ensemble). The same symbols are used as
in Fig. 3.
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cal postprocessing method based on directly adjusting
the probabilities in the rank histogram; this method was
applied by Eckel and Walters (1998). This worked well,
but differs from the present approach in not being
based on an explicit probabilistic model. Wilks (2002)
proposed smoothing forecast ensembles by fitting mix-
tures of Gaussian distributions to ensemble data. This is
related to the BMA approach, but does not account for
ensemble underdispersion.

A different approach to postprocessing an ensemble
called “best member dressing” has been proposed by
Roulston and Smith (2003). This consists of identifying
the best member of an ensemble for each element of a
historic record, finding the error in that ensemble mem-
ber forecast, finding the empirical distribution of such
errors, and then “dressing” each forecast in the en-
semble with the empirical error distribution found in
this way. Viewed in this way, BMA could also be
viewed as a way of dressing an ensemble of forecasts.
The approaches differ in some ways, however. The
method of Roulston and Smith (2003) is designed for
the situation where all the ensemble members can be
treated equally, as exchangeable, and, for example, it
treats the ECMWF control forecast in the same way as
the other 50 members of the ECMWF ensemble. In
contrast, BMA is applicable to the situation where the
ensemble members come from different, identifiable
sources, but is also applicable to the exchangeable situ-
ation, as we have noted. For example, BMA would
allow different treatment of the control and other
ECMWF ensemble members in a straightforward way.

Best member dressing is based on the assumption
that the best member can be identified with high prob-
ability, and as such does not take uncertainty about the
identification of the best member into account. Usually,
however, there is considerable uncertainty about which
is the best member. The best member dressing method
attempts to overcome this problem by using a large
number of variables when identifying the best member.
But this is based on the assumption that all the vari-
ables used have a common best member. This is an
issue with the best member dressing approach, whereas
BMA does not make this assumption.

In contrast, BMA takes account of this uncertainty
through the use of the mixture likelihood (5), and it is
estimated explicitly by the ẑkst that are produced by the
EM algorithm, given by Eq. (6). The quantity ẑkst can
be interpreted as the posterior probability that forecast
k was the best member of the ensemble at place s on
day t.

BMA is designed to produce probabilistic forecasts,
but as a by-product it also produces a deterministic
forecast, and this outperformed all the ensemble mem-
bers as well as the ensemble mean in our experiments.
It has also been proposed that forecasts be combined
using multiple linear regression to produce a single de-
terministic forecast or “superensemble” (Van den Dool

and Rukhovets 1994; Krishnamurti et al. 1999; Kharin
and Zwiers 2002). It seems likely that BMA and regres-
sion would give similar forecasts. However, one differ-
ence is that the weights in BMA are constrained to be
positive, whereas those in regression are not; see, for
example, Tables 2, 4, 5, and 6 in Van den Dool and
Rukhovets (1994). Negative weights seem hard to in-
terpret in this context; they imply that, all else being
equal, temperature (for example) is predicted to be
higher when the forecast with the negative weight is
lower. Stefanova and Krishnamurti (2002) have pro-
posed a way of using superensembles to estimate the
probability of a dichotomous event. This does not ap-
pear to apply to estimating the PDFs of continuous
weather quantities, and the problem of interpreting
negative coefficients continues to apply in this case.

We have used a training period consisting of the past
25 days of data. This works well for the UW ensemble
because it allows the method to adapt quickly not just
to changes in the distribution of forecast errors and the
relative performance of the models, but also to changes
in the ensemble itself. The UW ensemble itself has ex-
perienced significant changes, in membership or in
other ways, several times per year on average. In addi-
tion, ensemble members may also change because of
improvements in data coverage, data assimilation
methods, resolution, model physics, integration meth-
ods, and computing power. Thus we have chosen a
training period in the recent past.

However, it would also be possible to use data from
previous years while restricting the training data to the
same season, as suggested by Hamill et al. (2004). This
would have the advantage of providing more data. But
it would have the disadvantage of using data from an
ensemble that might be quite different from the one in
current use, unless one takes the ambitious route of
ensemble reforecasting (Hamill et al. 2004), which is
extremely computationally intensive. There is a trade-
off here, and how best to make it is an empirical ques-
tion.

Probabilistic temperature forecasts using BMA and
the (now eight-member) UW ensemble are now being
produced on a regular basis and are available online at
http://isis.apl.washington.edu/bma/index.jsp. This pro-
vides maps of the BMA deterministic forecast, the up-
per and lower bounds for any desired probability levels,
and the margin of error, as in Fig. 6. It also provides a
map of the probability of temperature being greater
than or less than any specified threshold. In addition,
one can click on any of the maps and obtain a picture of
the BMA PDF at the grid point clicked on, with its
component densities, similar to Fig. 3.
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