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Abstract

Numerical weather prediction models are subject to parametrizations of subgrid and
complex physical processes such as cloud development in convective scale models.
Traditionally, the numerical values of these model parameters are chosen either by
manual model tuning or, more objectively, by the augmented state approach during
the data assimilation. In this thesis, we look at the problem of parameter estimation
through an artificial intelligence (AI) lens by training two types of artificial neural
networks to estimate several parameters of the one-dimensional modified shallow-
water model as a function of the atmospheric state obtained by observations or the
stochastic Ensemble Kalman Filter. Through perfect model experiments, we show
that Bayesian neural networks as well as Bayesian approximations of points estimate
neural networks can estimate model parameters with relevant statistics and manage
to decrease the initial state errors even under sparse and noisy conditions. The
sensitivity to the number of ensemble members, observation coverage, and neural
network size is shown. Additionally, we use the method of layer-wise relevance
propagation to gain insight into how the artificial neural networks are learning and
discover that they naturally select only a few grid points that are subject to strong
winds and rain to make their predictions.
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Chapter 1

Introduction

Correctly predicting the weather can help politicians to evacuate flood areas in time,
utility companies to provide enough resources when needed, and the average Joe to
not get caught in the rain without an umbrella. The earliest attempts of forecasting
the weather reach back thousands of years when people used optical phenomena
such as the color and shape of clouds or the occurrence of halos around the moon or
sun to predict short-term changes in the atmosphere (Frisinger, 1978). The birth of
modern meteorology is attributed to Robert FitzRoy in 1860, who used the newly
established telegraph network to gather daily, local weather reports at set times
(Mellersh, 1968). Together with barometers, records of atmospheric patterns, and
his own nautical charts he was able to make the first primitive synoptic analyses and
published daily weather forecasts in The Times in 1861. It took humanity another
half of a century to lay the foundations of modern numerical weather prediction.

Figure 1.1: Operational Model forecast skill scores from 1955 - 2006 provided by
the National Centers for Environmental Prediction (NCEP)

The first practical effort of simulating the future change of the current state of
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CHAPTER 1. INTRODUCTION

the atmosphere using mathematical models was attempted in the 1920s by Lewis Fry
Richardson (1922) based on theoretical work by Abbe (1901) and Bjerknes (1904).
Richardson’s six-hour forecast of the change in surface pressure over two points in
Central Europe was computed manually for 6 weeks and predicted values that were
incorrect by two orders of magnitude. With advances in computational power and
atmospheric physics, weather prediction became operational in 1955 and steadily
increased its forecast skill since then (Figure 1.1). The large error in Richardson’s
first attempt was attributed to an imbalance in the wind velocity and pressure fields,
that were used as the initial conditions. This shows that choosing the right initial
conditions is not a trivial task and emphasizes the importance of data assimilation
(DA) as its own research field. DA developed from simple interpolation approaches
to the now widely used methods of combining observations with a priori computed
atmospheric states using state-of-the-art numerical weather prediction models. By
including error covariances of observations and numerical forecasts DA is able to
not only compute the initial state of the atmosphere but its uncertainty as well.
However, a large contribution to the numerical weather prediction model error is
due to the parametrization of microphysics and due to processes in the surface and
boundary layers. Estimating these tunable parameters and allowing for uncertainty
in them can lead to a more realistic respresentation of the model error (Ruckstuhl
and Janjić, 2018). A detailed overview of modern DA methods and parameter esti-
mation in DA will be given in Section 2.1.
In recent years machine learning (ML) has become a subject of interest in various re-
search fields within atmospheric physics. Attempts of including ML into the cycle of
climate and weather modeling reach from using ML to represent sub-grid processes
in global climate models (O’Gorman and Dwyer, 2018; Rasp et al., 2018; Yuval
and O’Gorman, 2020), over replacing DA by an artificial neural network (ANN) to
emulate an Ensemble Kalman Filter (EnKF) (Cintra and Campos Velho, 2014), to
utilizing an ANN as a surrogate for the dynamical model of the atmospheric state
during the DA (Brajard et al., 2020; Ruckstuhl et al., 2021). Although the ML
algorithms show promising results in these idealized test cases, they come with two
major drawbacks. On one hand, ANNs typically do not provide an uncertainty with
their predictions, which makes it hard to ascribe a confidence when using ANNs in
operational settings. On the other hand, they are still seen as black boxes that do
not provide any insight into the functions they are trying to approximate. To tackle
the latter problem Toms et al. (2020) introduced layer-wise relevance propagation
(LRP) to the geosciences, which can be used to visualize how the ANN makes its
prediction. Labe and Barnes (2021) utilized this method to disentangle relative in-
fluences on regional surface temperatures of aerosols and greenhouse gases in the
atmosphere. The former problem could be approached by using stochastic ANNs
instead of their widely used deterministic counterpart.
The goal of this thesis is threefold. First, to estimate parameters of the convective-
scale modified shallow water model from sparse and noisy observations using ML
and DA. Second, to compare the predictions and statistics of stochastically trained
Bayesian neural networks (BNNs) with deterministically trained point estimate neu-
ral networks (NNs). And third, to investigate the influence of the model parameters
on the model states by applying LRP onto the trained ANNs.
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Chapter 2

Theoretical Background

The following chapter summarizes the theoretical basics of the methods developed
for this thesis. It is divided into two parts. The first one is concerned with the
relevant DA methods, especially the stochastic EnKF. The second part outlines the
theory behind ANNs while focusing on the differences between deterministically and
stochastically trained ANNs.

2.1 Data Assimilation

Given an initial state of the atmosphere, numerical weather models simulate the evo-
lution of geophysical variables, e.g. potential temperature, wind, pressure. Sources
of information about this initial state are observations and usually the most recent
forecast from a numerical model (background). The procedure of combining these
different sources to obtain an estimate (analysis) of the true state of the atmosphere
is called data assimilation. Using only observations as the initial state is usually not
feasible as they are mostly sparse and not made on the same grid points as the nu-
merical model. Moreover, they sometimes measure the atmospheric variables only
indirectly and are subject to observational errors, that have to be accounted for.
If one would only use a numerical model to make weather predictions without any
input from observations, the model would drift away from reality over time due to
uncertain initial conditions and due to model error, caused by discretization and
approximations of small-scale and complex physical processes, known as parameter-
izations.

Initialization Short Forecastbackground
from last cycle

background
for next cycle

Analysis Weather
Forecast

Observations

Data Assimilation Cycle

Figure 2.1: Scheme of Data Assimilation Cycle
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2.1. DATA ASSIMILATION CHAPTER 2. THEORETICAL BACKGROUND

A DA cycle (Figure 2.1) usually consist of two steps. The analysis step, where
a model state is estimated using observations and the background state. And the
forecast step, where the analysis is propagated forward in time using the numerical
model until the next DA cycle is performed. Most DA methods in use nowadays
are based on minimizing a quadratic cost function of model states and differ in their
representation of the error statistics, computational cost, and accuracy. Although
the parameter estimation algorithms presented in this study can generally be used
with any DA method, here they were tested in combination with the stochastic
EnKF based on the algorithm described in Evensen (2003) for estimating the state
of the atmosphere.

2.1.1 Stochastic Ensemble Kalman Filter

Even though Kalman Filter-based methods assume that the errors of the atmo-
spheric variables are Gaussian distributed, which is often violated on the convective
scale, they are still a popular tool for DA due to their affordable computational
requirements. One way of dealing with the suboptimal Gaussian assumption is to
enforce constraints based on physical conservation laws during the DA (Janjic et
al., 2014, QPEns), which results in more physically plausible states for the ensemble
mean and the individual ensemble members. In Ruckstuhl and Janjić (2018) this
approach was successfully applied on a convective scale model. Since the focus of
this work is testing new algorithms for parameter estimation, a simple stochastic
EnKF without constraints will be used. It is based on the following cost function
for each of the Nens ensemble members:

J(xa,it ) = (xf,it − x
a,i
t )TP−1t (xf,it − x

a,i
t ) + (yit −Htx

a,i
t )TR−1t (yit −Htx

a,i
t ) (2.1)

where i, i = 1...Nens denotes one ensemble member, x
f/a,i
t are the background and

analysis states respectively, Rt is the observation-error covariance matrix and Ht

denotes the observation operator, that maps the model states to the observation
space. In this work we assume Ht to be linear. {yit} represents an ensemble of
observations acquired by perturbing the observation vector yt such that yit = yt + εi.
εi is a pertubation taken from a distribution with a bias and a standard deviation
that represent the observation error. The subscript t refers to the time when a
DA cycle is being carried out, which usually corresponds to the time appropriate
observations are available. For the rest of this chapter, the subscript t will be
withheld. The forecast-error covariance matrix is generated with the ensemble of
background states:

P = (xf,i − xf )(xf,i − xf )T (2.2)

Where the overline denotes the average over the ensemble members. Minimizing J
for each ensemble member yields the analysis ensemble:

xa,i = xf,i + PHT (HPHT +R)−1(yi −Hxf,i) (2.3)

with the Kalman gain K = PHT (HPHT + R)−1. In all experiments exhibited in
this study Equation (2.3) was used to estimate only the atmospheric state.

12
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2.1.2 Parameter Estimation in DA

Primarily, DA techniques are used to estimate the state while keeping the model
parameters fixed. Depending on how strongly correlated the atmospheric variables
are to the parameters this can lead to error growth even if the initial state is known
perfectly. A popular method to estimate model parameters during the DA cycle is
state augmentation (Jazwinski, 1970). For this approach the parameter vector θ is
appended to the state vector x, resulting in the augmented state:

x̃a/f,i =

[
xa/f,i

θa/f,i

]
(2.4)

Where θ consists of the parameters that are wished to be estimated. To calcu-
late the analysis for the augmented state one simply replaces xa/f,i with x̃a/f,i in
Equations (2.2) and (2.3) and uses H̃ instead of H. Since the model parameters
cannot be observed, H̃ is defined as:

H̃x̃a/f,i = H̃

[
xa/f,i

θa/f,i

]
= Hxa/f,i. (2.5)

This approach comes with additional challenges such as choosing a dynamical
model and applying a localization scheme to the parameters to deal with underdis-
persion (Ruiz et al., 2013). In Ruckstuhl and Janjić (2018) these challenges were
successfully approached by choosing stochastic dynamics to represent parameter un-
certainty and introducing a global updating technique for localization in parameter
space based on the spatial updating technique from Aksoy et al. (2006).

2.2 Machine Learning

Although the field of ML is vast and encompasses a wealth of different methods
and algorithms, in this thesis we will concentrate on a subclass of ML algorithms -
the artificial neural network (ANN). While the first steps towards ANNs occurred
as early as in the middle of the 20th century (Mcculloch and Pitts, 1943), they
only recently received a considerable amount of interest among all areas of scientific
research with the advent of fast algorithms, parallel computing, and free machine
learning libraries. ANNs are able to approximate complex, non-linear functions
without any knowledge of the underlying function through a process called Deep
Learning (LeCun et al., 2015).
But what is an ANN? Mathematically, an ANNs is itself a function f(x), which
maps an input x ∈ Rn to an output y ∈ Rm. m,n are also called the input/output
size respectively. f(x) can be defined as a composition of other functions hi such
that:

f(x) = hl(hl−1(...h2(h1(x)))) (2.6)

Each hi is called one layer and its definition depends on the architecture (func-
tional model) of the ANNs. In this study the non-linear weighted sum will be used
such that:

f(x) = al(Wlal−1(Wl−1...a2(W2a1(W1x+ b1) + b2)...+ bl−1) + bl) (2.7)

13



2.2. MACHINE LEARNING CHAPTER 2. THEORETICAL BACKGROUND

Where ai is the non linear activation function of the i-th layer. Which activation
function to use depends on the problem at hand. For this work the Rectified Linear
Unit (ReLU) and the Leaky Rectified Linear Unit (LeakyReLU) were used, which
are defined as:

ReLU(x) = max(0, x) (2.8)

LeakyReLU(x) = max(0, x) + 0.01 ∗min(0, x) (2.9)

l − 1 is the number of hidden layers and {Wi} = W, {bi} = b are sets of matri-

ces/vectors with coefficients W
(k,l)
i , b

(k)
i called the weights/biases of the ANN, which

parameterize the ANN’s functional model. For easier notation, it is possible to ap-
pend the biases b onto the matrices W when simultaneously a 1 is appended onto x,
which will be used from now on. Such an ANN is called fully connected feed forward.
Since this notation is cumbersome, especially when the ANN becomes more com-
plex, it is convenient to visualize it as a network structure where an arrow represents
a single weight and a node depicts the weighted sum after the activation function
has been applied.

Figure 2.2: Artificial neural network visualized as network structure

In Figure 2.2 a simple ANN with n = 2,m = 1, 1 hidden layer and no biases is
illustrated. Note that the size of the hidden layer, which in this example is 2, can
be chosen freely. On its own the ANN is nothing special, it only becomes powerful
when it is being trained. Because the initialization and the training of the weights
depend on the type of ANN, further explanations can be found in the following
subchapters. The one thing they have in common though is the fact that the ANN
needs training data which is a set of input-output pairs {xj} = X, {yj} = Y such
that ftrue(xj) = yj, where ftrue represents the true function that is wished to be
approximated. Note that it is possible to acquire X, Y without actually knowing
ftrue: training data for a cats and dogs classifier (an ANN which takes pictures as
input and predicts whether there was a cat or a dog in that picture) can be produced
by anybody who knows what a cat and a dog look like. ftrue in this case is the inner
mechanisms of the human brain and its biological neurons. This is also where the

14
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name Artificial Neural Network was inspired from. Nevertheless, it should be noted
that even one of the largest published ANN’s with 160 billion parameters (Trask
et al., 2015) is not even close to the complexity of the human brain with more than
100 trillion synapses (Nguyen, 2010).

2.2.1 Point Estimate Neural Networks

The name point estimate neural network (NN) was adopted from Jospin et al. (2020)
and is used in this work to refer to a type of ANN which usually in literature is simply
called neural network. This nomenclature was chosen to emphasize the distinction to
Bayesian neural networks. For the rest of this study, we will refer to point estimate
neural networks as NN and also use NN as a mathematical symbol to represent a
forward pass through the network defined by its functional model. The training of
the NN is achieved by approximating the minimal loss point Wmin of a loss function
floss(NN(X,W ), Y ) over ntr input-label pairs X, Y . Stochastic gradient descent is
the most popular method of solving this high-dimensional optimization problem and
can be summarized as:

1. Initialize numerical values W ′ for all coefficients of the weights either randomly
or through prior knowledge

2. Calculate

floss(NN(X,W ′), Y ) =
1

ntr

ntr∑
j=1

floss(NN(xj,W
′), yj) (2.10)

for each input-output pair of the training set by realizing a forward pass
through the network

3. Update the weights by taking a step in the direction of the negative gradient

W ′ := W ′ − η

ntr

ntr∑
j=1

∇floss(NN(xj,W
′), yj) (2.11)

where η is called the learning rate

4. Go back to 2 until W ′ ' Wmin.

In practice, the training set is usually split up into subsets called mini-batches.
Once steps 3 and 4 have been applied on all mini-batches an epoch has been com-
pleted. In this study the mean squared error (MSE) was chosen as the loss function:

MSE(NN(X,W ), Y ) =
1

ntr

ntr∑
j=1

(NN(xj,W )− yj)2. (2.12)

There have been many improvements successfully applied to the basic stochastic
gradient descent algorithm. The one used in this work is the algorithm called Adam,
which was proposed in Kingma and Ba (2014). Instead of having a constant learning
rate, η is being adapted during the training individually for each weight based on
the first and second moments of the gradients.
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Once the training phase is finished, the current values for the weights W are being
frozen and the NN can be used to predict an output for a given input xpred by
realizing a forward pass through the network:

NN(xpred) = ypred. (2.13)

2.2.2 Bayesian Neural Networks

The definition of BNNs is not completely consistent across literature. In Jospin
et al. (2020) it is defined as a type of ANN ”...built by introducing stochastic com-
ponents into the network...” and trained using Bayesian inference (MacKay, 1992).
In Figure 2.3 the difference between stochastic and point estimate neural networks
is visualized. Stochastic components can either be introduced as probability distri-
butions over the activation functions or over the weights, although for this study
the latter one was utilized as this is the more common one, i.e.

W ∼ p(ω). (2.14)

We introduced a new variable ω here to emphasize the distinction between sam-
pled weights W from their underlying probability distributions p(ω). After ascribing
these priors p(ω), one can obtain the likelihood of observations p(D|ω) using some
training data D. Note that we assume here that a functional model has already
been chosen.

Figure 2.3: Distinction between point estimate neural networks (left) and stochastic
neural networks (right) with probability distributions over the weights (Jospin et al.,
2020)

The evidence p(D) is then given by:

p(D) =

∫
H

p(D|ω′)p(ω′)dω′. (2.15)

In the case of the NN we defined a ”good” model as the one with weight coef-
ficients that minimized a loss function. For the BNN a ”good” model is one with
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distributions that maximize the log evidence log(p(D)). The posterior distribution
p(ω|D) is given by Bayes’ rule:

p(ω|D) =
p(D|ω)p(ω)∫

ω
p(D|ω′)p(ω′)dω′

=
p(D|ω)p(ω)

p(D)
(2.16)

So that given a new input xpred the BNN’s uncertainty can be obtained by:

p(ypred|xpred, D) =

∫
ω

p(ypred|xpred, ω′)p(ω′|D)dω′. (2.17)

Although in practice it is usually sampled indirectly:

W ∼ p(ω|D)

ypred = BNNW (xpred).
(2.18)

Equation (2.18) can be used nsample times to obtain a set of predictions {yipred}
nsample

i=1

from which mean and variance can be calculated to estimate the models predic-
tive power and uncertainty. For the rest of this study we will use the notation
BNN(xpred) = {yipred} to summarize this process.
However, computing the evidence which is needed to get the posterior is usually
intractable. Therefore in this study the variational inference approach is used to
approximate the posterior p(ω|D) with a variational distribution qφ(ω), which is
parameterized by the distribution parameters φ. During the training of the BNN
the distribution parameters φ are learned such that qφ(ω) is as close to p(ω|D) as
possible.
To measure the dissimilarity between two distributions qφ(ω) and p(ω|D) the Kullback-
Leibler divergence (KL, Kullback and Leibler (1951)) is used:

KL(q||p) =

∫
ω

qφ(ω′)log

(
qφ(ω′)

p(ω′|D)

)
dω′ = Eq[log qφ(ω)]− Eq[log p(ω|D)] (2.19)

Although it seems like minimizing KL in this form is still not possible because
the posterior appears directly in Equation (2.19), this is not the case. To show this
another measure, the evidence lower bound (ELBO), is introduced:

ELBO = Eq[log p(ω,D)]− Eq[log q(ω)]. (2.20)

Where the joint probability p(ω,D) = p(D|ω)p(ω) = p(ω|D)p(D) is used to
easily show the relationship between ELBO and KL:

ELBO = Eq[log p(ω,D)]− Eq[log qφ(ω)]

= Eq[log p(ω|D)] + Eq[log p(D)]− Eq[log qφ(ω)]

= log(p(D))−KL(q||p).
(2.21)

Because p(D) is independent of the posterior, maximizing ELBO is equivalent
to minimizing KL(q||p). Additionally KL(q||p) ≥ 0 as a result of Gibbs’ inequality.
Therefore ELBO is a lower bound of the log evidence:

ELBO ≤ log(p(D)). (2.22)

17



2.2. MACHINE LEARNING CHAPTER 2. THEORETICAL BACKGROUND

As a result, maximizing ELBO increases the log evidence and thereby making the
BNN more accurate and moves the variational distribution qφ(ω) closer to the true
posterior p(ω|D). The complexity of maximizing ELBO depends on the choice of qφ
and usually, distributions from the exponential family are used to simplify training.
For this study, Normal distributions were used to construct qφ. A popular method
to maximize ELBO is stochastic variational inference. For a detailed derivation of
this technique, we refer to Hoffman et al. (2013). Stochastic variational inference is
stochastic gradient descent applied on variational inference and also carried out by
iterating through all mini-batches of the available training data for several epochs.
Again, once training has completed the values for the distribution parameters φ are
frozen and the BNN can be used to make an ensemble of predictions by realizing
several forward passes through the network with the same input xpred, each time
sampling W from qφmax :

BNN(xpred) = {ypred,i}
nsample

i=1 (2.23)

where the number of samples nsample can be chosen freely. The choice of the prior
distribution p(ω) and the family which the variational distribution qφ is taken from
is usually called the BNN’s stochastic model to differentiate it from its functional
model, which represents the number and type of hidden layers, size of hidden layers
and activation functions.

2.2.3 Parameter Estimation in ML

Since parameter estimation using classical approaches is well-studied, we approach
this challenge through the lens of machine learning. In Yadav et al. (2020) the
coupling parameter of the two-level Lorenz-96 model (Lorenz, 2005) was estimated
as a function of the resolved, large-scale state variable using a Gaussian Process (GP)
(Rasmussen and Williams, 2006). The training data was generated by solving the
Lorenz-96 model with different values of the coupling parameter and using snapshots
from the time series of the state variable as the input. The parameter used to
generate a respective time series served as the corresponding label. Additionally, the
GP was compared to two types of deep neural networks and a simple linear regression
where the GP outperformed the other methods in most of the experiments. The
success was largely attributed to the true parameters being in fact jointly Gaussian.
Further, it was noted that the GP decreases in accuracy considerably when the
training data becomes noisy.
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Chapter 3

Methods

In this chapter the specific methods used in this thesis are outlined in detail. The
convective-scale model of the atmospheric state evolution from Würsch and Craig
(2014) is summarized in Section 3.1. In Section 3.2 the parameter estimation algo-
rithms are outlined and an overview of the architectures and training of the artificial
neural networks is given. Finally, we briefly summarize the LRP algorithm used in
this study in Section 3.3.

3.1 Modified Shallow Water Model

For this study the same numerical model, model parameters, and parameter bounds
(Table 3.1) as in Ruckstuhl and Janjić (2018) were used to conduct the experi-
ments but with ANNs estimating the parameters instead of the augmented state
approach. Numerical twin experiments are a common approach to test new DA
methods. Hereby the true state (nature run) of the atmosphere is generated by the
physical model. Synthetic observations are produced by adding random perturba-
tions to the true state. For all experiments in this study, such twin experiments
were conducted using the modified shallow water model (Würsch and Craig, 2014).
This model is computationally inexpensive but still represents the key space and
time scales of storm developments. Thus it allows for easy testing of new methods
for convective-scale DA.
The model is based on the shallow water equations for the fluid velocity u and the
fluid height h with a modification of the geopotential φ to include conditional in-
stability. Additionally, a variable for the rain r was added to mimic nature. The
equations are as follows:

∂u

∂t
+ u

∂u

∂x
+
∂(φ+ c2r)

∂x
= βu +Du

∂2u

∂x2
(3.1)

φ =

{
φc if h > hc

gh else
(3.2)

∂r

∂t
+ u

∂r

∂x
= Dr

∂2r

∂x2
− αr −

{
δ ∂u
∂x

if h > hr and ∂u
∂x
< 0

0 else
(3.3)

∂h

∂t
+
∂(uh)

∂x
= Dh

∂2h

∂x2
(3.4)
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• Du, Dr, Dh : diffusion constants

• c2 = g × h0 : gravity-wavespeed for absolute fluid layer h0(h0 < hc)

• δ : production rate of rain

• α : removal rate of rain

Convection is triggered by adding a low amplitude noise source βu at random
locations to the velocity at every model time step. When the fluid height h exceeds
the threshold hc, which represents the level of free convection, the geopotential is
replaced by a lower constant value φc. The gradient of the geopotential forces fluid
to the regions of lower geopotential, which then builds up the fluid height in those
regions. Once h reaches the threshold hr rain is being produced by adding rainwater
mass to the geopotential. The removal of rain is mimicked by a linear relaxation
towards zero. For the experimental set-up a one dimensional grid of length 125 km
with 250 grid points was used, which yields a state vector of the form:

x =

uh
r

 ∈ R750. (3.5)

The model parameters which were chosen to be estimated are the rain removal rate
α, the low constant value for the geopotential φc and the threshold for the fluid
height hr. Assuming all of the model parameters are constant in space the resulting
parameter vector is:

θ =

αφc
hr

 ∈ R3. (3.6)

Observations are generated from the nature run every 60 model time steps by adding
a Gaussian error to u and h and a lognormal error to r to keep its positivity. To
simulate radar data only the grid points where r > 0.005 were observed. Further-
more, wind observations of 25% of the remaining grid points were added. The model
parameters for the nature run are taken from uniform distributions. The upper and
lower bounds of the uniform distributions for the model parameters as well as biases
and standard deviations of the observational errors are summarized in Table 3.1 and
Table 3.2 respectively.

Parameter Lower Bound Upper Bound
α 0.0003 0.001
φc 899.7 899.9
hr 90.15 90.25

Table 3.1: Lower and upper bounds for the uniform distributions of the model
parameters

Variable Mean Standard Deviation
u 0 0.001
h 0 0.02
r 0.001 1e-7

Table 3.2: Means and standard deviations for the normal distributions of the obser-
vational errors
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Functional Model
Type of Layer Size (input x output) Activation Function

Linear 750 x 31 ReLU
Batch-Norm 31 x 31 None

Dropout (p=0.5) 31 x 31 None
Linear 31 x 19 ReLU
Linear 19 x 11 ReLU
Linear 11 x 3 Sigmoid (only at evaluation)

Training
Optimizer Adam

Mini-Batch-Size 32
Number of Epochs 150

Table 3.3: Functional model and training specifics of NN

3.2 Parameter Estimation Algorithms

Deep learning for model parameter estimation is not well developed. The methods
described in this section can be seen as the results of a first exploration within this
field. Two types of artificial neural networks - a deep ensemble of point estimate
neural networks (Section 3.2.1) and a Bayesian neural network (Section 3.2.2) - were
trained on the background state produced by the modified shallow water model. The
goal is to estimate the global model parameters α, φc hr as a function of the state
consisting of the observable atmospheric variables u, h, r.

3.2.1 Deep Ensemble of Point Estimate Neural Networks

Functional Model

A natural choice for the output of the NN is the model parameter vector θ =
[ α
φc
hc

]
∈

R3 since these are the unknown variables to be estimated. The input is generally
determined by the available data, although somewhat arbitrary. Developing a theo-
retical basis for selecting appropriate features as inputs is an active area of research
(Varma, 2020). For the offline approach all three atmospheric variables of the whole

grid x =
[ u
h
r

]
∈ R750 at one point in time were chosen as the input, yielding an input

size of 750 for

NN(x) = θ. (3.7)

In Krasnopolsky et al. (2013) a multi-output regression problem with data simulated
by a cloud-resolving model was successfully approached using an ensemble of fully
connected feed-forward NNs. Therefore this basic architecture was adopted with an
additional batch normalization layer to accelerate the training (Ioffe and Szegedy,
2015) and a dropout layer to increase accuracy and minimize overfitting (Labach
et al., 2019). A summary of the architecture can be found in Table 3.3.

Training

To generate the input-output pairs for the training, first ntr = 100.000 sets of pa-
rameters were taken randomly from the uniform distributions specified in Table 3.1:

θj =

αjφjc
hjc

 ∼
U(lα, uα)
U(lφ, uφ)
U(lh, uh)

 . (3.8)
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For each set of parameters θj the shallow water model was initialized with the same
starting conditions and run for t0 = 1000 model time steps resulting in:

M(θj, xinit) =

ujt0hjt0
rjt0

 . (3.9)

Where j goes from 1...ntr, M denotes the modified shallow water model and xinit

is the same initial state vector for all ntr input vectors. Note that only the state
vector at t0 = 1000 was used for the training. We chose 1000 here because this
corresponds to the point in time when the first observations were available for the
DA. Training the NN on state vectors taken from a wide range in time results in
poorer performance. This is caused by the NN not being able to distinguish between
differences in the states due to different parameters versus due to the time evolution
of the state. Additionally, the input data was augmented during the training by
adding pertubations taken from distributions with means and standard deviations
corresponding to the values specified in Table 3.2. For each input sample at t = 1000
3 perturbed samples were added during the training resulting in a training size of
400.000. This is a common technique to increase the training size and enhance the
generalization capabilities of a NN (Rusak et al., 2020).

Uncertainty Estimation

To quantify the uncertainty of the parameter estimation the method of deep en-
sembles from Lakshminarayanan et al. (2017) was adopted. This is an easy im-
plementable approach, where an ensemble of neural networks {NNk}nNN

k=1 consisting
of nNN members with the same functional model but random initial weights are
trained independently. During the DA cycles, each analysis ensemble member xa,it
was used as input for each NN ensemble member resulting in {θi,kt } → nNN ∗ Nens

parameter estimates. To obtain Nens parameter vectors out of this distribution two
methods were implemented and compared:

1

nNN

nNN∑
k=1

NNk(xa,it ) = θit (3.10)

θit ∼ Beta(µt, vart) (3.11)

µt and vart are the mean and variance from {θi,kt }. A beta distribution was chosen
here to keep the parameters bounded. From here on we will refer to (3.10) as the
mean method and to (3.11) as the beta method. To investigate the influence of the
NN ensemble size (nNN), experiments for nNN = 5, 10, 15 were conducted.

Combining with Data Asimilation

After the training was completed, the ensemble of NNs was used during the DA
cycle to estimate parameters. The estimated state vector generated by the stochastic
EnKF was used as input (Figure 3.1). In the following the algorithm is summarized:

1. DA cycle < 0: Training
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Figure 3.1: Scheme of the integration of the deep ensemble of point estimate neural
networks into the data assimilation cycle

2. DA cycle = 0: To initialize the background state for the DA the observa-
tions were used as input for the NNs (if state was only partially observed,
observations were interpolated first)

3. DA cycle > 0: Whenever observations were available (every 60 model time
steps)

(i) an analysis xa,it was calculated using the stochastic EnKF and a forecast-
error covariance localization (Gaspari and Cohn, 1999) of 6 grid points

(ii) for each analysis ensemble member xa,it an ensemble of parameters {θi,kt }
was estimated using the NN ensemble

(iii) Nens parameter vectors were calculated either according to the mean or
to the beta method and used as parameters of the modified shallow water
model for the short forecast until the next observations were available

3.2.2 Bayesian Neural Networks

Bayesian neural networks are known to be data efficient, less prone to overfitting,
and provide a natural way of quantifying uncertainty (Jospin et al., 2020) without
the need to train a whole ensemble of NNs. The objective of the methods described
in the following section is twofold. First, to compare the accuracy and uncertainty of
a Bayesian neural network (BNN0) with a deep ensemble of point estimate neural
networks. Second, to investigate the feasibility of training BNNs every time new
observations are available (BNNt) using a realistic number of forecast ensemble
members as the training data.

Functional Model

In this study 2 Bayesian neural networks, BNN0 and BNNt (Tables 3.4 and 3.5),
were trained. Similar to the point estimate neural network, fully connected feed-
forward models with the atmospheric state as the input and the parameters as the
output were chosen as the functional model:

BNN(x) = θ. (3.12)
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The hyperparameters such as neurons per hidden layer, position of batch nor-
malization layer, and number of epochs were optimized independently and therefore
slightly differ from the functional model of the point estimate neural network (Ta-
ble 3.3).

Functional Model Stochastic Model

Type of Layer Size (input x output) Activation Function Priors p(W
(k,l)
i ) N (0, 1)

Batch-Norm 750 x 750 None Variational distributions qφ(W
(k,l)
i ) N (µ, σ)

Linear 750 x 20 LeakyReLU Training
Linear 20 x 20 LeakyReLU Optimizer Adam
Linear 20 x 20 LeakyReLU Mini-Batch Size 32
Linear 20 x 3 Sigmoid (only at evaluation) Number of Epochs 3

Table 3.4: Functional model, stochastic model and training specifics of BNN0

Functional Model Stochastic Model

Type of Layer Size (input x output) Activation Function Priors p(W
(k,l)
i ) N (0, 1)

Linear min{dim(ỹobs), 124} x 2 LeakyReLU Variational distributions qφ(W
(k,l)
i ) N (µ, σ)

Linear 2 x 2 LeakyReLU Training
Batch-Norm 2 x 2 None Optimizer Adam

Linear 2 x 2 LeakyReLU Mini-Batch Size 32
Linear 2 x 3 Sigmoid (only at evaluation) Number of Epochs 9

Table 3.5: Functional model, stochastic model and training specifics of BNNt

Training

BNN0 was trained on the same training data that was used for the point estimate
neural network: 100.000 snapshots in time of the atsmopheric state at t = 1000.
BNN0 has in total about 33.000 trainable weights. This large number is no problem
if there is enough training data available.
On the other hand, BNNt is trained on snapshots of the atmospheric forecast state
for t > 1000 during the data assimilation cycle whenever new observations are
available. Since the number of analysis/forecast ensemble members in a real-life
scenario is restricted by computational limitations, the training data size is much
smaller than that used for BNN0. Therefore it is necessary to reduce the number
of trainable weights for BNNt. The first modification is to reduce the input size.
Experiments from Ruckstuhl and Janjić (2018) indicate that the rain r and fluid
height h are stronger correlated to the parameters than the wind u. Hence instead
of using all 3 atmospheric variables as the input, only r and h were used. Since
BNNt is trained from scratch each time, the input size can be left variable. This
allows to only train on those grid points that are actually observed. Additionally,
because we assume the true parameters to be constant over the whole grid, it might
not be necessary to use all observed grid points as input. Therefore if more than 62
gridpoints (about 25 % of the whole grid) were observed, only those 62 grid points
with the highest observed values for r were used. x̃f,i in Figure 3.2 refers to this
reduced background state. To further reduce the number of learnable weights, the
number of neurons per hidden layer was decreased from 20 to 2. In total, this results
in a maximum of around 540 learnable weights for BNNt. The resulting input for
the training of BNNt is then given by

Htx̃
f,i
τ + εi (3.13)
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with the observation operator Ht and i = 1, ..., Nens. The 10 previous points in
time τ = t − 9, ..., t were used to increase the training size from Nens to Nens · 10.
The labels for these inputs are simply the model parameters θit−60 from the previous
estimation. Noise corresponding to the observational error specified in Table 3.2 was
added during the training for the same reasons as for the offline training. Details of
the architecture for BNNt can be found in Table 3.5.
For BNNt 9 training epochs were necessary to reach a minimum in the validation
loss, which is most likely caused by the reduced training size compared to the offline
training.

Uncertainty Estimation

A widely used default for the priors of BNNs are normal distributions with mean 0
and standard deviation σ (Jospin et al., 2020). After evaluating the trained weights
of the point estimate neural networks it seemed appropriate to set σ = 1. When
using BNNs to estimate parameters, the number of outputs is not restricted. By
performing several forward passes through the trained network with the same input
a distribution of outputs can be generated.

Combining with Data Assimilation

Figure 3.2: Scheme of the integration of the Bayesian neural networks into the data
assimilation cycle

The combination of the Bayesian neural network with the data assimilation is similar
to that of the point estimate neural network. In the following the algorithm is
summarized:

1. DA cycle < 0: Training of BNN0

2. DA cycle = 0: To initialize the background state for the DA the observations
were used as input for BNN0 (if state was only partially observed, observations
were interpolated first)

3. DA cycle > 0: Whenever observations were available (every 60 model time
steps)

(i) an analysis xa,it was calculated using the stochastic EnKF and a forecast-
error covariance localization (Gaspari and Cohn, 1999) of 6 grid points
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(ii) a new Bayesian neural network, BNNt, was trained on the transformed
forecast ensemble computed by Htx̃

f,i
τ + εi

(iii) the observation vector ỹt was passed through the trained network BNNt

Nens times to generate an ensemble of parameter estimates

(iv) the Nens parameter vectors were used as parameters of the modified shal-
low water model for the short forecast until the next observations were
available

3.3 How Do Machines Learn?

To obtain more insight into how the ANNs trained in this work are learning to
estimate the model parameters from the observable state, the method of Layer-
Wise Relevance Propagation was utilized. LRP is a visualization tool, which takes
a trained ANN and an ANN input sample, which can be either from the training
or test datasets, as the input and produces an LRP heatmap as the output. The
LRP heatmap is a vector of the same size as the ANN input and those entries with
higher numerical values can be interpreted as being more relevant for the ANN’s
prediction as the ones with lower values (Figure 3.3).

Figure 3.3: Visualization of the LRP algorithm applied on an image classification
ANN (Bach et al., 2015)

This method has been introduced first to the field of computer vision by Bach
et al. (2015) and the PyTorch implementation used in this study is from Böhle et al.
(2019). For an in-depth explanation of the algorithm, we refer to Toms et al. (2020),
who recently introduced LRP to the geosciences. The underlying idea of LRP is to
calculate a relevance for each input pixel by taking a specific ANN output, which in
this case would be either α, φc or hr, and propagating it back through the network
according to a certain set of propagation rules. Applying LRP to the ANNs trained
in this study could thus give insight into which grid points and atmospheric variables
were most relevant for each of the three parameters.
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Chapter 4

Results

The experiments illustrated in this chapter investigate different techniques to incor-
porate the ML generated parameter estimates into the DA cycle and their influence
on the initial state errors. The sensitivity of the state ensemble size, the observa-
tion coverage, and the neural network size are examined. Finally, LRP is utilized
to investigate the influence of the model parameters to the model states by visual-
izing which grid points and atmospheric variables are most relevant for the ANNs
prediction.

4.1 Metrics

The metrics used to display the experimental results for a variable λ are the Root
Mean Squared Error (RMSE) and the spread of the estimated ensemble. Given the
true state of a variable λtr ∈ Rn, the ith member of the estimated ensemble λi ∈ Rn

and its corresponding mean λ = 1
Nens

∑Nens

i=1 λi, the metrics are defined as:

RMSE(λ) =

√√√√ 1

n

n∑
j=1

(λtr − λ)2j (4.1)

spread(λ) =

√√√√ 1

Nens − 1

Nens∑
i=1

(λi − λ)2. (4.2)

The RMSE is a measure of the accuracy of an estimator, where a lower value
means that the estimator fits the data better. The spread is a measure of the
uncertainty of the estimated ensemble. Therefore a larger value of the RMSE should
correspond to a larger value in the spread. For each experiment shown in this
chapter 100 simulations were conducted, where for each of these the parameters
of the nature run were taken randomly from the bounded uniform distributions
specified in Table 3.1. The metrics were averaged over all simulations to obtain
statistically significant values. Additionally, the spread was averaged over all grid
points for easier comparison. Finally, to evaluate the performance of the NN and of
the BNN the coefficient of determination (R2) will be utilized in Section 4.2. Given
a set of N parameter predictions θi, their corresponding ground truths θitr, and the
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ground truth’s mean θtr = 1
N

∑N
i=1 θ

i
tr MAE and R2 are defined as:

R2(θ, θtr) = 1−
∑N

i=1(θ
i
tr − θtr)2∑N

i=1(θ
i
tr − θi)2

. (4.3)

For a perfect model that always predicts the same value as the ground truth
R2 = 1. A model which always predicts the average of the ground truth θtr would
yield R2 = 0. A model with R2 < 0 performs worse than simply predicting the
average of the ground truth for all inputs.

4.2 Performance

For the first comparison between point estimate neural networks and Bayesian neural
networks 500 samples from the test dataset, which the ANNs were not trained on,
were used to estimate the parameters. Each output ensemble was averaged and then
plotted against its corresponding ground truth. Additionally, to rank the results
obtained by the ANNs a simple linear regression (LR) model was fitted to the same
training data (Figure 4.1). As a benchmark, the ideal output was plotted as well,
which corresponds to the black lines with slope 1. For a fair comparison, the best
performing ANNs of each type were used in these experiments.

model α φc hr
NN 0.53 0.44 0.62
BNN 0.79 0.74 0.75
LR 0.41 0.26 -0.52

Table 4.1: R2 of the parameter predictions plotted in Figure 4.1 for NN, BNN and
LR

The BNN outperforms the NN as well as the LR in all three parameters while
the LR has the lowest R2 scores for all parameters (Table 4.1). While the BNN has
similar R2 scores for the different parameters the NN’s and LR’s performance varies
greatly between them. For hr the LR performs even worse than a benchline model
which would predict the average value of the bounds for all inputs. The scatter plot
in Figure 4.1 emphasizes that both ANNs are slightly overestimating low parameter
values while underestimating high parameter values. in correspondence with the
R2 scores in Table 4.1 the NN (blue) seems to have problems correctly predicting
especially φc and low values for all parameters while the BNN (red) displays a rather
uniform predictive power for all three parameters. The simple LR (green) predicts
values that are greatly out of bounds for all parameters.
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Figure 4.1: Output of best performing NN (blue dots), BNN (red dots), and simple
LR (green dots) against ground truths and ideal output (black lines) of 500 samples

4.3 Time Evolution

Since the ANNs are trained on only one point in time, the question arises how they
perform when using states from later points in time as the input and comparing
this with BNNt, which is constantly retrained in time. If the predictive power does
not significantly decrease it would only be necessary to train the ANN once and
it could then be used to predict parameters whenever necessary, even for changing
parameters. To investigate this, time evolution experiments were conducted for
all ANNs described in section 3.2 and compared with each other in the following
subsections.

4.3.1 Point Estimate Neural Networks

For the time evolution experiments the first observations were taken from the nature
run after a spinup time of 1000 model time steps and used to estimate the initial
parameters:

NNk(yobst0 ) = {θk0} (4.4)
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Figure 4.2: Time evolution of averaged RMSEs of atmospheric variable estimates
(left) and parameter estimates (right) with 50 analysis ensemble members and for
comparison, true parameters were known exactly and used for the background states
(black) and parameters were not known and not estimated (gray)

For the mean method θ0 = 1
nNN

∑nNN

k=1 θ
k
0 was used to initialize the background

states of all state ensemble members. For the beta method θ0 and the variance of
{θk0} were used to fit a beta distribution to the initial estimation. For all background
ensemble members, the parameters were taken from this beta distribution. The
background state was also run for 1000 model time steps before starting with the
DA cycles. From then on, the NN was used as described in subsection 3.2.1. For
Figures 4.2 and 4.3 the RMSEs were plotted against time in DA cycles. Note that
between two points on the x-axis lie 60 model time steps. For all experiments, 50
ensemble members for the analysis and background were used. The RMSE of the
parameters is smallest at the beginning of the time evolution because DA cycle =
0 corresponds to 1000 model time steps. After that, the RMSEs grow for about 50
cycles and then oscillate around a relatively constant value with a slightly negative
slope (Figure 4.2, right). Generally, the error in the parameters and atmospheric
variables decreases with bigger NN ensemble sizes (Figure 4.4) while their ensemble
spread slightly decreases (Figure 4.5). The beta method outperforms the mean
method in all experiments and is therefore used for all further experiments. The
beta method is not only more accurate but also manages to increase the spread of all
atmospheric variables (Figure 4.3, left). The influence of the parameter estimation
is strongest for the rain r. This is due to the strong correlation of the parameters
with the rain, especially the rain threshold hr and the rain removal rate α.
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Figure 4.3: Time evolution of averaged ensemble spread of atmospheric variable esti-
mates (left) and parameter estimates (right) with 50 analysis ensemble members and
for comparison, true parameters were known exactly and used for the background
states (black) and parameters were not known and not estimated (gray)
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Figure 4.4: Data from Figure 4.2 averaged over last 100 DA cycles
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Figure 4.5: Data from Figure 4.3 averaged over last 100 DA cycles

4.3.2 Bayesian Neural Network

The same time evolution experiments were conducted for the BNN algorithm de-
scribed in section 3.2.2. In Figures 4.6 and 4.7 this is referred to as BNN0 +BNNt.
For comparison, the case where only BNN0 is used throughout all 250 DA cycles
and the beta method with 15 NN ensemble members were plotted as well. The
errors for BNN0 and 15 beta are directly comparable as they were both trained on
the same training data and the same inputs were used for the parameter predic-
tions. For the initial estimate at DA cycle = 0 BNN0 outperforms the NN in all
experiments. The error in α was reduced by 50 %, in φc by 38 % and in hr by 40 %.
Over time, however, the RMSEs of the parameters increase a lot faster for BNN0

compared to 15 beta. The RMSEs of the atmospheric variables converge for both
methods over time. BNN0 + BNNt also increases the RMSEs over time, but to a
lesser extent compared to the other methods. The increase in the RMSEs was likely
caused by several factors. On one hand, the training data for BNN0 was generated
using the same initial state for all sets of parameters. For BNNt each sample of the
training data was generated by using a different set of parameters for each ensemble
member of the analysis. Therefore the differences in the training data are not only
due to different parameters but also due to different initial states. This could make
it harder for the BNN to find distinct characteristics for the parameter estimation.
On the other hand, the much smaller training size of 500 (10 points in time for each
of the 50 background ensemble members) used in these experiments compared to
the 100.000 used for BNN0. Although the latter could be improved by simply using
more forecast ensemble members.
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Figure 4.6: Time evolution of averaged RMSEs of atmospheric variable estimates
(left) and parameter estimates (right) with 50 analysis ensemble members and for
comparison, true parameters were known exactly and used for the background states
(black) and parameters were not known and not estimated (gray)
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4.4 Distribution of Parameter Estimates

Histograms of the parameter estimates for one single experiment were plotted for the
mean and beta method with 15 NN ensemble members, as well as for both BNNs.
Since this is only a single experiment, the results shown here are not statistically
significant. However, they still illustrate the key differences between the methods.
To also investigate the change of the distributions over time, a histogram for each
method was plotted at DA cycle = 1 (Figures 4.8 to 4.10, upper panel) and at DA
cycle = 250 (Figures 4.8 to 4.10, lower panel). As a reminder, the mean method
(green) takes the mean over all NN ensemble members for each analysis ensemble
member. Therefore it does not actually portray the uncertainty of the parameter
estimation of the NN, but rather the spread caused by the analysis. The fact that
this spread shrinks over time is therefore in accordance with the results from Fig-
ures 4.3 and 4.7. The beta method (blue) on the other hand embodies much more
the true distribution of the NN estimate, which reaches over the whole range with
accumulations close to the true value. For this particular experiment, the predic-
tion of the beta method actually improves over time. This can also be observed in
Figure 4.2, where the RMSEs reach a maximum between DA cycles 0 and 50 and
then slowly decrease over time. The initial estimate of BNN0 is close to a Gaussian
distribution with the mean near the true value and a small variance. Nonetheless,
over time the distribution spreads out over the whole range with aggregations near
the edges. This can be explained by the sigmoid activation function, that was used
during evaluation: if a prediction was outside the given range, it was mapped to the
bounds. It can therefore be concluded that the true spread of the BNN0 is much
larger. This is expected behavior from BNNs that is used on input, which differs a
lot from its training data. The initial distribution of BNNt at DA cycle = 1 also
seems to be Gaussian and is similar to that of BNN0. After some time at DA cycle
= 250, most of the estimates of BNNt lie very close to the true value with some
outliers. These outliers could be the reason for the increase in the RMSE and spread
over time in Figures 4.6 and 4.7 (right).
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Figure 4.8: Histogramms of estimates for rain removal rate α for one single experi-
ment at DA cycle = 1 (upper panel) and at DA cycle = 250 (lower panel)
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Figure 4.9: Histogramms of estimates for constant geopotential φc for one single
experiment at DA cycle = 1 (upper panel) and at DA cycle = 250 (lower panel)
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Figure 4.10: Histogramms of estimates for rain threshold hr for one single experiment
at DA cycle = 1 (upper panel) and at DA cycle = 250 (lower panel)

4.5 Sensitivity Experiments

The sensitivity of the analysis RMSE and analysis ensemble spread to the number of
state ensemble members and observation coverage was studied for different setups to
compare the performance and statistics of the different methods with the best and
worst case szenarios and to investigate the capabilities of the ANNs under sparse
conditions. Additionally, the sensitivity to the BNN size, here defined as neurons
per hidden layer, was examined. For the sensitivity experiments illustrated in the
following section the same experiments as described in section 4.3 were conducted
and averaged over the last 100 DA cycles.

4.5.1 Setups

In total, 6 setups were studied:
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1. true (black): the true values of the parameters were known and used for the
background state throughout all 250 DA cycles

2. random (gray): the true values of the parameters were not known and not
estimated

3. 15 beta (dark blue): the parameters were estimated using an ensemble of NNs
with 15 members according to the beta method at each DA cycle

4. 15 beta init (light blue): the parameters were estimated using an ensemble of
NNs with 15 members according to the beta method only at DA cycle = 0
and then kept constant over time

5. BNN0 + BNNt (dark red): the parameters were estimated at DA cycle = 0
using BNN0 and at DA cycle >0 using BNNt

6. BNN0 init (pink): the parameters were estimated at DA cycle = 0 using
BNN0 and then kept constant over time

Setup 4 and 6 were chosen because Figures 4.2 and 4.6 indicate that, if the
parameters are assumed to be constant over time, the RMSEs of the parameters are
lowest for the initial estimation. It might therefore not be necessary to estiamte the
parameters at each DA cycle.

4.5.2 Ensemble Size

The ensemble size that is varied in Figures 4.11 and 4.12 refers to the number of
ensemble members of the analysis. As expected, the RMSEs of the atmospheric vari-
ables decrease for all setups with an increase in ensemble members due to the samples
being able to more accurately approximate the true Kalman filtering distribution.
For u and h both BNN setups are very close to each other while outperforming both
NN setups in all experiments and achieve the same result as the best-case scenario
(true) for a large ensemble size of 400. For the rain r BNN0 + BNNt needs at
least 50 ensemble members to surpass the NN while BNN0 init consistently has
the lowest RMSE for all ensemble sizes. The sensitivity of BNN0 + BNNt can be
explained due to the ensemble size directly controlling the training size for this setup
and more training data usually increases the predictive capabilities of a BNN. This
is also illustrated in the RMSEs of the parameters which decrease for larger ensem-
ble sizes, especially the rain threshold hr. For Nens > 100 however, the RMSEs of
the parameters seem to saturate for BNN0 + BNNt which could be caused by the
very small network size of only 2 neurons per hidden layer. To test this hypothesis,
network size sensitivity experiments were conducted in Figure 4.15. That setup 4
and 6 (15 beta init and BNN0 init) don’t show any sensitivity in the parameters is
not surprising as these setups only use the initial, interpolated observations as input
to estimate the parameters and are therefore independent of the analysis state. It
is surprising though that also 15 beta shows no sensitivity for the ensemble size at
all. Furthermore, even though the parameter RMSEs of 15 beta init is lower than
that of 15 beta, its spread is larger. This results in a lower RMSE, but higher spread
of the rain r for 15 beta init compared to 15 beta. For an ensemble size of 400 the
spread of r for 15 beta init is slightly higher, around 7.2 ·10−5, than its RMSE which
means that the true value of r is contained in the analysis.

36



CHAPTER 4. RESULTS 4.5. SENSITIVITY EXPERIMENTS

25 50 100 200 400
Ensemble Size

0.0026

0.0027

0.0028

0.0029

0.0030

0.0031

0.0032

0.0033

RM
SE

 u
true
random
15_beta
15_beta_init
BNN0 + BNNt

BNN0_init

25 50 100 200 400
Ensemble Size

0.017

0.018

0.019

0.020

0.021

0.022

RM
SE

 h

true
random
15_beta
15_beta_init
BNN0 + BNNt

BNN0_init

25 50 100 200 400
Ensemble Size

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

RM
SE

 r

true
random
15_beta
15_beta_init
BNN0 + BNNt

BNN0_init

25 50 100 200 400
Ensemble Size

0.00008

0.00009

0.00010

0.00011

0.00012

0.00013

0.00014

0.00015

0.00016

RM
SE

 15_beta
15_beta_init
BNN0 + BNNt

BNN0_init

25 50 100 200 400
Ensemble Size

0.025

0.030

0.035

0.040

0.045

0.050

RM
SE

 
c 15_beta

15_beta_init
BNN0 + BNNt

BNN0_init

25 50 100 200 400
Ensemble Size

0.012

0.014

0.016

0.018

0.020

0.022

RM
SE

 h
r 15_beta

15_beta_init
BNN0 + BNNt

BNN0_init

Figure 4.11: RMSEs for atmospheric variable estimates (upper panel) and parameter
estimates (lower panel) averaged over last 100 DA cycles of 100 random experiments
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Figure 4.12: Ensemble spread of atmospheric variable (upper panel) and parameter
estimates (lower panel) averaged over last 100 DA cycles of 100 random experiments

4.5.3 Observation Coverage

The deep ensemble of NNs and BNN0 were trained on the full grid, but observations
in real-life settings are usually sparse. Therefore, their sensitivity to the observa-
tion size was investigated, which is here defined as the percentage of observed grid
points. Instead of observing only those grid points, whose rain values exceed a cer-
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tain threshold as in the other experiments, percentages corresponding to the values
of the x-axis in Figures 4.13 and 4.14 of random grid points were observed. The
same 6 setups as in section 4.5.2 were used with 100 experiments for each setup and
each observation size. For the final scores, the RMSEs of all 100 experiments of
the last 100 DA cycles were averaged and plotted against observation size. For the
initial parameter estimations, the initial observations were interpolated and used as
the input for the ANNs just as in the previous experiments.
The RMSEs of the atmospheric variables, especially u and h, show a strong sensi-
tivity for the observation size and decrease with more observations available. The
parameter RMSEs of the deep ensembles of NNs, on the other hand, show almost
no sensitivity at all. While the parameter RMSEs of 15 beta remain constant for all
three parameters, 15 beta init displays a small improvement between 30− 40% for
φc and between 60− 100% for hr. The BNNs exhibit a slightly stronger sensitivity
compared to the NNs up until around 60% of available observations. This low sensi-
tivity on the observation size indicates that although the ANNs were trained on the
whole grid, only some grid points are actually relevant for the ANN’s prediction. To
investigate this hypothesis the LRP algorithm described in Section 3.3 was utilized
in Section 4.6.

30 40 50 60 70 80 90 100
Observations Size in %

0.001

0.002

0.003

0.004

0.005

RM
SE

 u

true
random
15_beta
15_beta_init
BNN0 + BNNt

BNN0_init

30 40 50 60 70 80 90 100
Observations Size in %

0.010

0.015

0.020

0.025

0.030

RM
SE

 h

true
random
15_beta
15_beta_init
BNN0 + BNNt

BNN0_init

30 40 50 60 70 80 90 100
Observations Size in %

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

RM
SE

 r

true
random
15_beta
15_beta_init
BNN0 + BNNt

BNN0_init

30 40 50 60 70 80 90 100
Observations Size in %

0.00008

0.00010

0.00012

0.00014

0.00016

RM
SE

 15_beta
15_beta_init
BNN0 + BNNt

BNN0_init

30 40 50 60 70 80 90 100
Observations Size in %

0.025

0.030

0.035

0.040

0.045

RM
SE

 
c

15_beta
15_beta_init
BNN0 + BNNt

BNN0_init

30 40 50 60 70 80 90 100
Observations Size in %

0.012

0.014

0.016

0.018

0.020

0.022

RM
SE

 h
r

15_beta
15_beta_init
BNN0 + BNNt

BNN0_init

Figure 4.13: RMSE for atmospheric variable estimates (upper panel) and parameter
estimates (lower panel) averaged over last 100 DA cycles of 100 random experiments
with 50 ensemble members
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Figure 4.14: Ensemble spread of atmospheric variable (upper panel) and parameter
estimates (lower panel) averaged over last 100 DA cycles of 100 random experiments
with 50 ensemble members.

4.5.4 Number of Neurons

The experiments discussed in this section investigate the hypothesis, gained from
Figure 4.11, that for Nens > 100 the predictive ability of BNNt could be positively
influenced by increasing the network size. Here the network size is defined as the
number of neurons per hidden layer Nh. For all experiments up until this point Nh of
BNNt was set to 2. For the results shown in Figure 4.15 the same 100 experiments
as before were run with the state ensemble size set to 200 and varied neurons per
hidden layer. Contrary to our hypothesis, the parameter RMSEs increase with an
increase in Nh as does the spread. This surprisingly has a positive effect on r, where
the RMSE decreases while its spread increases. The velocity u and fluid height h on
the other hand show no sensitivity to the network size. Figure 4.15 indicates that
not only the accuracy of the parameter estimation but also its spread is relevant
for the state error. This in turn highlights the importance of parameter estimation
methods that are able to produce relevant distributions such as BNNs.
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Figure 4.15: RMSE for atmospheric variable estimates (upper panel) and parameter
estimates (lower panel) averaged over last 100 DA cycles of 100 random experiments
with 200 ensemble members using BNNt

4.6 Layer-Wise Relevance Propagation

Since, to the best of our knowledge, the LRP algorithm has not been applied to
BNNs so far Figures 4.16, 4.17 and 4.20 were produced using only the best per-
forming point estimate NN, which is the same as the one used for Figure 4.1. For
Figure 4.16 LRP was applied to all three parameters α, φc and hr for 100 inputs
and averaged. The inputs used in these experiments are observations taken from
the true atmospheric state of fully observed grids. To better compare the NN inputs
(observations of the state) with their corresponding LRP heatmaps, the values of
u, h, r and the LRP heatmap values were rescaled between 0 and 1 and plotted to-
gether as heatmaps. The x-axis represents the 250 grid points while the y-axis has
no meaning and just provides a spatial dimension so that the colors of the heatmap
are visualized better. Darker red tones correspond to higher values and thus repre-
sent grid points that were more relevant for the NN’s prediction.

The total relevances plotted in Figure 4.16 are simply the LRP heatmap values
of one parameter for a certain atmospheric variable summed and divided by the
total sum of LRP heatmap values for that parameter. Even though all experiments
conducted so far indicate that r is the most sensitive variable to the parameter
estimations, for the NN h is the most relevant variable while u and r have about
the same relevance. It is also surprising that even though the results plotted in
Figure 4.16 are averaged over many experiments, one can still determine distinct
lines over certain grid points. These distinct lines indicate that the NN uses only a
small number of grid points to make its prediction instead of the whole grid. Using
only a small number of important grid points as the input would in turn decrease
the number of learnable parameters and might result in the need for much smaller
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training sizes. This finding would also explain why the sensitivity on the observation
size discussed in section 4.5.3 is so low. The heatmaps of u and r look very similar to
the input indicating that those grid points with strong winds and rain are especially
relevant for the NN. The heatmaps of h however look very different from their input
and need further analysis to investigate what led the NN to use these grid points to
make its prediction. In Figures 4.17 and 4.20 the heatmaps of a single experiment
were plotted for all three parameters to investigate which gridpoints were chosen
by the NN and if the heatmaps of the three parameters indeed look as similar as
Figure 4.16 indicates.
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Figure 4.16: Input (first row) and corresponding LRP heatmaps for α (second row),
φc (third row) and hr (last row) averaged over 100 experiments

Instead of plotting the LRP heatmaps and the atmospheric variable values as
heatmaps, they were visualized as graphs with the x-axis corresponding to the grid
points and the y-axis corresponding to the rescaled values. The shaded areas rep-
resent the values of u, h and r while the red stars are the heatmap values for α, φc
and hr of the corresponding inputs. Visualizing the LRP outputs this way makes
it even more obvious how similar the LRP heatmaps of the three parameters are to
each other. Furthermore one can see that grid points with strong winds and rain are
very relevant for the NN, although there does not seem to be a distinct relationship
between h and its corresponding LRP heatmap. On the other hand, if one plots
the LRP heatmap α of h together with the rain as in Figure 4.20, it seems like the
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relevant grid points of h are the ones where it is raining. This would explain why
simply interpolating the observations and using these to estimate the parameters,
as was done for BNN0 init and 15 beta init in Figures 4.11 to 4.14, works so well.
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Figure 4.17: Rescaled values of fluid velocity u (upper panel), height h (middle
panel), rain r (lower panel) and corresponding LRP heatmaps α (red stars) of u,h,r
against all 250 grid points for a single experiment
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Figure 4.18: Rescaled values of fluid velocity u (upper panel), height h (middle
panel), rain r (lower panel) and corresponding LRP heatmaps φc (red stars) of u,h,r
against all 250 grid points for a single experiment
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Figure 4.19: Rescaled values of fluid velocity u (upper panel), height h (middle
panel), rain r (lower panel) and corresponding LRP heatmaps hr (red stars) of u,h,r
against all 250 grid points for a single experiment
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Figure 4.20: Rescaled values of rain r (blue) and LRP heatmap α of h (red stars)
against all 250 grid points for the same experiment as Figure 4.17

From a physical standpoint, it is rather surprising that the heatmaps in Fig-
ures 4.16 to 4.19 look so similar for all three parameters. To check if this is simply
due to the fact that they are predicted simultaneously by a single NN, the same ex-
periments as in Figure 4.16 were repeated with three individually trained NNs, one
for each parameter. For the results in Figure 4.21 three training and test datasets
were generated: each time keeping two of the parameters constant while varying
the parameter that is wished to be estimated. In this setup, there is a clear dis-
tinction between the heatmaps of the three individual parameters and also between
the heatmaps of Figure 4.16 and Figure 4.21. The relevances shifted from the fluid
velocity u and height h towards the rain r for all three parameters, especially for φc
and hr where the rain is now the most relevant variable. For the rain removal rate
α the most relevant variable is still h. While in Figure 4.16 the relevances were con-
centrated on a few single grid points, they are now more spread out over the grid. To
investigate if this spread is due to the averaging over many experiments, the same
plot as in Figure 4.17 was created for the three individually trained NNs for one
single experiment. When comparing Figures 4.17 to 4.19 with Figures 4.22 to 4.24
it becomes apparent that when the NNs are trained for each parameter individually,
almost all rainy grid points are now relevant for the NN’s decision instead of just
a select few. While α (Figure 4.22) makes use of all thee atmospheric variables,
the relevances of φc and hr are concentrated on the rain r. Interestingly, although
the NNs of φc and hr were trained independent of each other, their LRP heatmaps
(Figures 4.23 and 4.24) still look quite similar.
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Figure 4.21: Input (first row) and corresponding LRP heatmaps for α (second row),
φc (third row) and hr (last row) averaged over 100 experiments for 3 individually
trained NNs
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Figure 4.22: Rescaled values of fluid velocity u (upper panel), height h (middle
panel), rain r (lower panel) and LRP heatmap α (red stars) of u,h,r against all 250
grid points for a single experiment of 3 individually trained NNs
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Figure 4.23: Rescaled values of fluid velocity u (upper panel), height h (middle
panel) , rain r (lower panel) and LRP heatmap φc (red stars) of u,h,r against all 250
grid points for a single experiment of 3 individually trained NNs
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Figure 4.24: Rescaled values of fluid velocity u (upper panel), height h (middle
panel) , rain r (lower panel) and LRP heatmap hr (red stars) of u,h,r against all
250 grid points for a single experiment of 3 individually trained NNs
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Chapter 5

Conclusion

In this thesis two types of ANNs were trained to estimate the tunable model pa-
rameters of the convective-scale modified shallow water model (Würsch and Craig,
2014). Different methods of integrating the parameter estimates of the ANNs into
the data assimilation cycle were developed and studied. Sensitivity experiments of
the number of analysis/forecast ensemble members, observation coverage, and BNN
size were performed. In the perfect model experiments the NN as well as the BNN
were able to decrease the initial state errors of the atmospheric variables by estimat-
ing the unknown model parameters. The largest reduction of the initial state error
was ultimately found in the rain r. Furthermore, the ANNs investigated here pro-
vided tools to quantify the uncertainty of the parameter estimation which increased
the spread of the state analysis and forecast while decreasing their RMSEs. Inter-
estingly, even though the rain exhibitted the largest sensitivity on the parameter
estimation, the LRP algorithm showed that the fluid height h was the most relevant
variable for the NN. In summary, the BNN produced more accurate estimates with
more relevant distributions while needing less training time and hyperparameter
tuning.
All experiments conducted in this study assumed parameters that are constant in
time and space. Future work testing the BNN’s ability to estimate local and tem-
poral parameters is therefore required. Furthermore, the training data utilized in
this study were snapshots of the grid at one point in time. Alternatively, one could
investigate the influence that using a time series of one or more grid points as the
BNN’s input would have. It should also be noted that the training data, as well as
the observations, were generated by the same simplistic model and it is not clear
how well the BNN’s predictive ability translates to more complex models and real
observations. Before testing the BNN in more realistic scenarios, it is necessary to
scale down its demand for large training sizes, possibly by reducing the number of
input features or number of hidden layers as demonstrated here. Indeed, the LRP
heatmaps showed that - at least for the point estimate neural networks - when all
parameters are estimated simultaneously, the NN makes use of only a few select grid
points. Of course, it would also be necessary to apply the LRP algorithm onto the
Bayesian neural network to check if this also holds for the BNN. Another possibility
to address these challenges would be to investigate an alternative kind of stochastic
ANN. Leinonen et al. (2020) succesfully trained a stochastic generative adversarial
network (GAN) to downscale time-evolving images of atmospheric fields from low to
high resolution. The GAN trained in Leinonen et al. (2020) consists of convolutional
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and recurrent layers and is able to predict images larger than those it was trained
on and can predict longer time series than the sequences used for training. This
reduces the need for large training sizes and offers the possibility for offline training.
Finally, combining ML with DA, as presented in this thesis, can lead to several
different hybrid algorithms that mitigate problems for each of the approaches. If it
is shown that it is feasible to represent model uncertainty (and observation error)
through training an ANN, as for example BNNs, time varying model error and obser-
vation error statistics may be included during the DA. Some work has already been
done in estimating model errors with ML. Bonavita and Laloyaux (2020) use ANNs
to estimate model error tendencies in the Integrated Forecasting System (IFS) of the
European Centre for Medium-Range Weather Forecasts (ECMWF) and show that
they are able to emulate the main outcomes acquired by the weak-constraint 4D-Var.
By utilizing not only the atmospheric variables as the input features but also ’cli-
matological predicators’ (Bonavita and Laloyaux, 2020), such as latitude, longitude,
time of the day and month, the predictive abilities of the ANNs are greatly en-
hanced. Providing the ANN with information on the geographical location, diurnal
cycle, and seasonal cycle during the training is an interesting approach that could
have potential benefits for the parameter estimation problem as well. Furthermore,
computational cost can be improved when including ML in the DA. For example,
Ruckstuhl et al. (2021) used a convolutional neural network (CNN) to show that a
hybrid of a CNN and the EnKF is able to decrease the analysis/background error,
equivalent to results obtained by the quadratic programming ensemble (QPEns)
(Janjic et al., 2014) but with a reduced computational cost compared to that of the
QPEns. Finally, ML approaches can also be improved while using DA by replacing
the backpropagation during the training with an adaptive Ensemble Kalman Filter
(Trautner et al., 2020).
In the studied test case, with perfect model assumptions and enough training data
(100.000 samples), the ANNs were able to estimate the unknown model parame-
ters and quantify their uncertainty more accurately than a simple linear regression,
even under sparse and noisy conditions. Including the parameter estimates obtained
from the ANNs in the DA cycle resulted in reduced state errors and increased en-
semble spreads compared to the case without parameter estimation and unknown
parameters.
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List of Abbreviations

AI artificial intelligence.

ANN artificial neural network.

BNN Bayesian neural network.

CNN convolutional neural network.

DA data assimilation.

ECMWF European Centre for Medium-Range Weather Forecasts.

EnKF Ensemble Kalman Filter.

GAN generative adversarial network.

GP Gaussian Process.

IFS Integrated Forecasting System.

LeakyReLU Leaky Rectified Linear Unit.

LR linear regression.

LRP Layer-wise Relevance Propagation.

ML machine learning.

NN point estimate neural network.

QPEns quadratic programming ensemble.

ReLU Rectified Linear Unit.
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Ruckstuhl, Y. M. and T. Janjić (2018). “Parameter and state estimation with ensem-
ble Kalman filter based algorithms for convective-scale applications”. In: Quar-
terly Journal of the Royal Meteorological Society 144.712, pp. 826–841.

Ruiz, J.J., M. Pulido, and T. Miyoshi (2013). “Estimating Model Parameters with
Ensemble-Based Data Assimilation: A Review”. In: Journal of the Meteorological
Society of Japan. Ser. II 91.2, pp. 79–99.

52

https://arxiv.org/abs/1612.01474


BIBLIOGRAPHY BIBLIOGRAPHY

Rusak, E. et al. (2020). A simple way to make neural networks robust against diverse
image corruptions. arXiv: 2001.06057.

Toms, B.A., E.A. Barnes, and I. Ebert-Uphoff (2020). “Physically Interpretable
Neural Networks for the Geosciences: Applications to Earth System Variability”.
In: Journal of Advances in Modeling Earth Systems 12.9.

Trask, A., D. Gilmore, and M. Russell (2015). “Modeling Order in Neural Word
Embeddings at Scale”. In: CoRR abs/1506.02338.

Trautner, M., G. Margolis, and S. Ravela (2020). “Informative Neural Ensemble
Kalman Learning”. In: CoRR abs/2008.09915.

Varma, V. (2020). Embedded methods for feature selection in neural networks. arXiv:
2010.05834.
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